
ASG-Encore™

User’s Guide
Version: 6.0

Publication Number: ENX0200-60
Publication Date: February 2002

The information contained herein is the confidential and proprietary information of Allen Systems Group, Inc. Unauthorized use of this
information and disclosure to third parties is expressly prohibited. This technical publication may not be reproduced in whole or in part, by

any means, without the express written consent of Allen Systems Group, Inc.

© 1993 - 2002 Allen Systems Group, Inc. All rights reserved.
All names and products contained herein are the trademarks or registered trademarks of their respective holders.

ASG Worldwide Headquarters Naples, Florida USA | asg.com

1333 Third Avenue South, Naples, Florida 34102 USA Tel: 941.435.2200 Fax: 941.263.3692 Toll Free: 1.800.932.5536

© 2002 Allen Systems Group, Inc.
All names and products are trademarks or registered trademarks of their respective holders.

ASG Documentation/Product Enhancement Fax Form
Please FAX comments regarding ASG products and/or documentation to (941) 263-3692.

Company Name Telephone Number Site ID Contact name

Product Name/Publication Version # Publication Date

Product:

Publication:

Tape VOLSER:

Enhancement Request:

ASG Support Numbers
ASG provides support throughout the world to resolve questions or problems regarding
installation, operation, or use of our products. We provide all levels of support during normal
business hours and emergency support during non-business hours. To expedite response time,
please follow these procedures.

Please have this information ready:

• Product name, version number, and release number

• List of any fixes currently applied

• Any alphanumeric error codes or messages written precisely or displayed

• A description of the specific steps that immediately preceded the problem

• The severity code (ASG Support uses an escalated severity system to prioritize service to
our clients. The severity codes and their meanings are listed below.)

• Verify whether you received an ASG Service Pack for this product. It may include
information to help you resolve questions regarding installation of this ASG product. The
Service Pack instructions are in a text file on the distribution media included with the
Service Pack.

If You Receive a Voice Mail Message:

1 Follow the instructions to report a production-down or critical problem.

2 Leave a detailed message including your name and phone number. A Support representative
will be paged and will return your call as soon as possible.

3 Please have the information described above ready for when you are contacted by the Support
representative.

Severity Codes and Expected Support Response Times

ASG provides software products that run in a number of third-party vendor environments. Support
for all non-ASG products is the responsibility of the respective vendor. In the event a vendor
discontinues support for a hardware and/or software product, ASG cannot be held responsible for
problems arising from the use of that unsupported version.

Severity Meaning Expected Support Response
Time

1 Production down,
critical situation

Within 30 minutes

2 Major component of product disabled Within 2 hours

3 Problem with the product, but customer has
work-around solution

Within 4 hours

4 "How-to" questions and enhancement
requests

Within 4 hours

Business Hours Support

Non-Business Hours - Emergency Support

Your Location Phone Fax E-mail

United States and
Canada

800.354.3578 941.263.2883 support@asg.com

Australia 61.2.9460.0411 61.2.9460.0280 support.au@asg.com

England 44.1727.736305 44.1727.812018 support.uk@asg.com

France 33.141.028590 33.141.028589 support.fr@asg.com

Germany 49.89.45716.222 49.89.45716.400 support.de@asg.com

Singapore 65.332.2922 65.337.7228 support.sg@asg.com

All other countries: 1.941.435.2200 support@asg.com

Your Location Phone Your Location Phone

United States and
Canada

800.354.3578

Asia 65.332.2922 Japan/Telecom 0041.800.9932.5536

Australia 0011.800.9932.5536 Netherlands 00.800.3354.3578

Denmark 00.800.9932.5536 New Zealand 00.800.9932.5536

France 00.800.3354.3578 Singapore 001.800.3354.3578

Germany 00.800.3354.3578 South Korea 001.800.9932.5536

Hong Kong 001.800.9932.5536 Sweden/Telia 009.800.9932.5536

Ireland 00.800.9932.5536 Switzerland 00.800.9932.5536

Israel/Bezeq 014.800.9932.5536 Thailand 001.800.9932.5536

Japan/IDC 0061.800.9932.5536 United Kingdom 00.800.3354.3578

All other countries 1.941.435.2200

ASG Web Site
Visit http://www.asg.com, ASG’s World Wide Web site.

Submit all product and documentation suggestions to ASG’s product management team at
http://www.asg.com/asp/emailproductsuggestions.asp.

If you do not have access to the web, FAX your suggestions to product management at (941)
263-3692. Please include your name, company, work phone, e-mail ID, and the name of the ASG
product you are using. For documentation suggestions include the publication number located on
the publication’s front cover.

http://www.asg.com/asp/emailproductsuggestions.asp
http://www.asg.com

Contents
Preface . vii
About this Publication .viii

Related Publications . ix

ASG-Existing Systems Workbench (ASG-ESW) . x

Invoking ESW Products .xiii

ESW Product Integration. xiv
Examples . xv

Publication Conventions. xvii

1 Introduction . 1
Encore Advantages . 1

Encore Overview . 2
Encore Components . 2

2 Product Overview. 5
Introduction . 5
Encore User Interface . 6
The Action Bar . 6

Help Facility . 13
Multiple Views . 13
Wildcard Patterns . 14
Understanding COBOL Terms. 14
Sets. 14
Subsets . 15
COBOL Subsets . 15
Targets . 18
i

ASG-Encore User’s Guide
3 Getting Started . 23
Introduction . 23
Starting an Encore Session . 25
Defining User Options . 26
Setting Online Operation Parameters . 27
Allocating Log, List, Punch, and Work Files . 28
Setting Log/List/Punch Processing Options . 29
Mapping PF Keys . 31
Options - Generate Pop-Up . 32
Allocating an AKR . 33
Verifying AKR Allocation Results . 35

The Analyze Facility . 36
Program Analyze Requirements . 36
Program Analyze Input . 36
Analyzing a Program through Encore. 37
Verifying Analyze Results . 39

Decomposition . 40
Defining Your Desired Goals . 41
Selecting a Program for Decomposition . 41
Program Cleanup. 41
Choosing a Code Extraction Objective - The Logic Segment . 42
Establishing a Project Notebook . 44

Clean-Up Tasks . 45
Complement Module Contents. 45
Perform Range Extract . 46
Report Extract . 46
Computation Variable Extract. 47
Transaction Extract . 48
Statement Extract . 48
Server Extract . 48

The Demonstration Program . 49

4 Perform Range Extract . 57
Introduction . 57
The Business Scenario . 58
Starting an Encore Session . 59
Extracting the Perform Range . 63
Viewing the Logic Segment. 67
Saving the Logic Segment . 69
ii

Contents
Creating the CALLable Module . 71
Creating the Complement Module. 75
Listing of CALCDAYS . 81
Extracting Multiple Perform Ranges. 85
Creating the CALLed Module with Multiple Entry Points. 85
Creating Separate Modules from a Multiple Perform Range Extract 92
Reviewing the Generated Modules . 97
Detecting and Eliminating Multiple Perform Range Common Code 99
Creating Complement Modules from Multiple Perform Range Extracts 104

Understanding Perform Extracts and Common Code. 108
Finding Common Code in CALLable Submodules and Complements . . . 112
Replacing IO Statements with CALLs to an IO Module 115
Generating the IO Module . 119
Perform Range Extract Compilation Issues . 121
Condition 1 . 121
Condition 2 . 121
Condition 3 . 124
Condition 4 . 125
Condition 5 . 125
Condition 6 . 126
Condition 7 . 126
Condition 8 . 127
Condition 9 . 127

Complement Module Program Listing . 128
Example 1 - Complement . 128
Example 2 - Submodule . 130

5 Computation Variable Extract . 133
Introduction . 133
The Business Scenario . 134
Starting an Encore Session . 134
Extracting the Computation Variable . 135
Viewing the Logic Segment . 140

Saving the Logic Segment . 143
Creating Pseudo Source Modules to Change Logic Segment Results. 145
Pseudo Source Modules . 145
Including Non-selected Code in the Logic Segment. 149

Controlling Extract Boundaries . 152
iii

ASG-Encore User’s Guide
Extracting Code from an Existing Logic Segment . 153

Computation Variable Extract Compilation Issues 155
Condition 1 . 155
Condition 2 . 155
Condition 3 . 156
Condition 4 . 156

6 Transaction Extract . 157
Introduction . 157
The Business Scenario . 158
Starting an Encore Session . 159
Extracting the Objective . 160
Creating the Replacement Module. 165
Changing the Start/End Points . 169
START/END Usage Notes . 176

Transaction Extract Compilation Issues . 178
Condition 1 . 178
Condition 2 . 179
Condition 3 . 179
Condition 4 . 180
Condition 5 . 180

7 Report Extract . 181
Introduction . 181
The Business Scenario . 182
Starting an Encore Session . 183
Extracting the Report . 184
Creating the COBOL Module . 188
Understanding the Results of the Extract . 191
Creating the Complement Module. 194
Complement Module - Understanding Generated Notes. 198
Using Pseudo Source Modules to Change Logic Segments 199
Pseudo Source Modules . 199
Including Non-selected Code in the Logic Segment. 203

Controlling Extract Boundaries . 207
Extracting Code from a Logic Segment . 207
iv

Contents
Report Extract Compilation Issues . 210
Condition 1 . 210
Condition 2 . 210
Condition 3 . 211
Condition 4 . 211
Condition 5 . 211

8 CICS Server Extract . 213
Introduction . 213
The Business Scenario . 214
Conversion Process . 215

Starting an Encore Session . 216
Extracting the CICS Server Program . 217
Generating the CICS Server Module. 223
Understanding the Results of the CICS Server Module Generation 234
CICS Server Extract Compilation Issues . 242
Condition 1 . 242
Condition 2 . 243
Condition 3 . 244
Condition 4 . 244

Extracting the Self Directed Server Program . 245
Using IBM Solutions . 254
Approach #1: Web-to-CICS Using 3270 Bridge . 254
Approach #2: Web-to-CICS Using Web-Aware CICS Programs 256
Approach #3: Web-to-CICS Using Java . 257
Available IBM Resources . 258

Glossary . 259

Index. 273
v

ASG-Encore User’s Guide
vi

Preface
This ASG-Encore User’s Guide provides user information about ASG-Encore (herein
called Encore). Encore is an integrated re-engineering environment for COBOL
programs. The two functional components of Encore are re-engineering analysis and code
extraction. Because Encore uses ISPF/PDF as its standard interface, you should be
familiar with ISPF/PDF conventions and usage.

Allen Systems Group, Inc. (ASG) provides professional support to resolve any questions
or concerns regarding the installation or use of any ASG product. Telephone technical
support is available around the world, 24 hours a day, 7 days a week.

ASG welcomes your comments, as a preferred or prospective customer, on this
publication or on any ASG product.

Note:
This guide documents the Encore product. If other ASG-Existing Systems Workbench
(herein called ESW) products are installed at your site, features from these products may
appear in the Encore product. These features are documented in the specific ESW product
guide to which they pertain. For information about these other product features, see the
corresponding documentation for that product.
vii

ASG-Encore User’s Guide
About this Publication
This publication consists of these chapters:

• Chapter 1, "Introduction," contains an overview of Encore program re-engineering
analysis, extraction, and generation functions.

• Chapter 2, "Product Overview," contains an overview of the Encore product,
including the user interface, help facility, sets, subsets, and target processing.

• Chapter 3, "Getting Started," contains an overview of how to initiate an Encore
session, define user options, allocate an Application Knowledge Repository (AKR),
analyze a COBOL program, code extraction objectives, and Complement Module
contents.

• Chapter 4, "Perform Range Extract," contains a practical demonstration of how to
perform a Perform Range extract to create a called submodule and a Complement
Module.

• Chapter 5, "Computation Variable Extract," contains a practical demonstration of
how to perform a Computation Variable extract to compute the value of a variable.

• Chapter 6, "Transaction Extract," contains a practical demonstration of how to
perform a Transaction Extract to create a replacement standalone program.

• Chapter 7, "Report Extract," contains a practical demonstration of how to perform a
Report extract to:

— Create a program that performs all of the month-end calculations for the
different types of checking accounts without producing the exception report.

— Create a standalone program that produces the exception report.

• Chapter 8, "CICS Server Extract," contains a practical demonstration of how to
perform a CICS Server extract to create a COMMAREA-based server program
from a 3270 CICS pseudo-conversational program.
viii

Preface
Related Publications
The documentation library for ASG-Encore consists of these publications (where nn
represents the product version number):

• ASG-Center Installation Guide (CNX0300-nn) contains installation and
maintenance information for ASG-Center, the common set of libraries shared by all
ASG-ESW products. ASG-Center must be installed before installing ASG-Encore.

• ASG-Encore Installation Guide (ENX0300-nn) contains installation and
maintenance information for ASG-Encore.

• ASG-Encore Reference Guide (ENX0400-nn) provides detailed information about
the pop-ups, screens, and commands used in ASG-Encore.

• ASG-Encore User’s Guide (ENX0200-nn) provides user information about
ASG-Encore.

Note:
To obtain a specific version of a publication, contact the ASG Service Desk.
ix

ASG-Encore User’s Guide
ASG-Existing Systems Workbench (ASG-ESW)

ASG-ESW (herein called ESW) is an integrated suite of components designed to assist
organizations in enhancing, redeveloping, or re-engineering their existing systems. ESW
products use the Application Knowledge Repository (AKR) to store source program
analysis information generated by the Analytical Engine. Figure 1 represents the
components of ESW.

Figure 1 • ASG Existing Systems Workbench

Existing Systems Workbench

ASG-Insight for Program Understanding

ASG-Estimate for Resource Estimation

ASG-SmartEdit for COBOL Editing
ASG-SmartEdit-Browse

ASG-SmartTest for Testing/Debugging
- TSO
- CICS
- IMS
- ASM
- APS
- PLI
- TCA
- DB2 Stored Procedure

ASG-SmartDoc for Program Documentation

ASG-Recap for Portfolio Analysis

ASG-Alliance for Application Understanding

ASG-Center

Application
Knowledge

Repository (AKR)

ASG-Encore

ASG-AutoChange

ASG-Bridge
x

Preface
This table contains the name and description of each ESW component:

ESW Product Herein Called Description

ASG-Alliance Alliance The application understanding component that is
used by IT professionals to conduct an analysis of
every application in their environment. Alliance
supports the analysis and assessment of the
impact of change requests upon an entire
application. Alliance allows the programmer/
analyst to accurately perform application analysis
tasks in a fraction of the time it would take to
perform these tasks without an automated
analysis tool. The impact analysis from Alliance
provides application management with additional
information for use in determining the resources
required for application changes.

ASG-AutoChange AutoChange The COBOL code change tool that makes
conversion teams more productive by enabling
quick and safe changes to be made to large
quantities of code. AutoChange is an interactive
tool that guides the user through the process of
making source code changes.

ASG-Bridge Bridge The bridging product that enables field expansion
for program source code, without being required
to simultaneously expand the fields in files or
databases. Because programs are converted in
smaller groups, or on a one-by-one basis, and do
not require file conversion, testing during the
conversion process is simpler and more thorough.

ASG-Center Center The common platform for all ESW products.
Center provides the common Analytical Engine to
analyze the source program and store this
information in the AKR. This common platform
provides a homogeneous environment for all
ESW products to work synergistically.
xi

ASG-Encore User’s Guide
ASG-Encore Encore The program re-engineering component for
COBOL programs. Encore includes analysis
facilities and allows you to extract code based on
the most frequently used re-engineering criteria.
The code generation facilities allow you to use the
results of the extract to generate a standalone
program, a callable module, a complement
module, and a CICS server. Prior to code
generation, you can view and modify the
extracted Logic Segment using the COBOL
editor.

ASG-Estimate Estimate The resource estimation tool that enables the user
to define the scope, determine the impact, and
estimate the cost of code conversion for COBOL,
Assembler, and PL/I programs. Estimate locates
selected data items across an application and
determines how they are used (moves, arithmetic
operations, and compares). Time and cost factors
are applied to these counts, generating cost and
personnel resource estimates.

ASG-Insight Insight The program understanding component for
COBOL programs. Insight allows programmers
to expose program structure, identify data flow,
find program anomalies, and trace logic paths. It
also has automated procedures to assist in
debugging program abends, changing a
computation, and resolving incorrect program
output values.

ASG-Recap Recap The portfolio analysis component that evaluates
COBOL applications. Recap reports provide
function point analysis and metrics information,
program quality assessments, intra-application
and inter-application comparisons and
summaries, and historical reporting of function
point and metrics information. The portfolio
analysis information can also be viewed
interactively or exported to a database,
spreadsheet, or graphics package.

ASG-SmartDoc SmartDoc The program documentation component for
COBOL programs. SmartDoc reports contain
control and data flow information, an annotated
source listing, structure charts, program summary
reports, exception reports for program anomalies,
and software metrics.

ESW Product Herein Called Description
xii

Preface
Invoking ESW Products

The method you use to invoke an ESW product depends on your system setup. If you
need assistance to activate a product, see your systems administrator. If your site starts a
product directly, use the ISPF selection or CLIST as indicated by your systems
administrator. If your site uses the ESW screen to start a product, initiate the ESW screen
using the ISPF selection or CLIST as indicated by your systems administrator and then
typing in the product command on the command line.

The product names can also vary depending on whether you access a product directly or
through ESW. See "ESW Product Integration" on page xiv for more information about
using ESW.

ASG-SmartEdit SmartEdit The COBOL editing component that can be
activated automatically when the ISPF/PDF
Editor is invoked. SmartEdit provides
comprehensive searching, inline copybook
display, and syntax checking. SmartEdit allows
you to include an additional preprocessor (for
example, the APS generator) during syntax
checking. SmartEdit supports all versions of IBM
COBOL, CICS, SQL, and CA-IDMS.

ASG-SmartTest SmartTest The testing/debugging component for COBOL,
PL/I, Assembler, and APS programs in the TSO,
MVS Batch, CICS (including file services), and
IMS environments. SmartTest features include
program analysis commands, execution control,
intelligent breakpoints, test coverage, pseudo
code with COBOL source update, batch connect,
disassembled object code support, and full screen
memory display.

ESW Product Herein Called Description
xiii

ASG-Encore User’s Guide
To initialize ESW products from the main ESW screen, select the appropriate option on
the action bar pull-downs or type the product shortcut on the command line.

ESW Product Integration

Because ESW is an integrated suite of products, you are able to access individual ESW
products directly or through the main ESW screen. As a result, you might see different
fields, values, action bar options, and pull-down options on a screen or pop-up depending
on how you accessed the screen or pop-up.

Certain ESW products also contain functionality that interfaces with other ESW products.
Using SmartTest as an example, if Alliance is installed, SmartTest provides a dynamic
link to Alliance that can be used to display program analysis information. If Insight is
installed and specified during the analyze, the Insight program analysis functions are
automatically available for viewing logic/data relationships and execution path. For
example, the Scratchpad option is available on the Options pull-down if you have Insight
installed. Access to these integrated products requires only that they be installed and
executed in the same libraries.

Product Name Shortcut ESW Pull-down Options

Alliance AL Understand Application

AutoChange CC Change Conversion Set

Bridge BR Change ASG-Bridge

Encore (Re-engineer) EN Re-engineer Program

Estimate ES Measure ASG-Estimate

Insight (Understand) IN Understand Program

Recap (Portfolio Analysis) RC Measure Portfolio

SmartDoc (Document) DC Document Program

SmartEdit SE Change Program
Or

Change Program with Options

SmartTest ST Test Module/Transaction
xiv

Preface
Examples
Example 1. Figure 2 shows the Encore Primary screen that displays when you access
Encore directly.

The Encore Primary screen contains these eight action bar menu items: File, View,
Extract, Generate, Search, List, Options, and Help.

Figure 2 • Encore Primary Screen

Figure 3 shows the Encore Primary screen that displays when you access Encore through
ESW by selecting Re-engineer Program from the ESW action bar menu. Notice that the
Primary screen name changes to ASG-ESW - Program Re-engineering when you enter
Encore through ESW. Also, the Logic menu item displays if Insight is installed.

Figure 3 • ESW Encore Primary Screen
xv

ASG-Encore User’s Guide
Example 2. Figure 4 shows the File - Analyze Submit pop-up that displays when you
access SmartTest directly. Figure 5 shows the File - Analyze Submit pop-up that displays
when you access SmartTest through ESW.

Notice that the Analyze features field in Figure 5 lists additional ESW products than
shown on Figure 4. This field is automatically customized to contain the ESW products
you have installed on your system.

The actions shown on these screens also vary. For example, the D action (ASG-SmartDoc
Options) is available on the File - Analyze Submit screen if the SmartDoc product is
installed on your system. In Figure 4, the ASG-SmartDoc Options action is not available.

Figure 4 • File - Analyze Submit Screen

Figure 5 • File - Analyze Submit Screen (Accessed through ESW)
xvi

Preface
Publication Conventions
ASG uses these conventions in technical publications:

Convention Represents

ALL CAPITALS Directory, path, file, dataset, member, database,
program, command, and parameter names.

Initial Capitals on Each Word Window, field, field group, check box, button, panel (or
screen), option names, and names of keys. A plus sign
(+) is inserted for key combinations (e.g., Alt+Tab).

lowercase italic
monospace

Information that you provide according to your
particular situation. For example, you would replace
filename with the actual name of the file.

Monospace Characters you must type exactly as they are shown.
Code, JCL, file listings, or command/statement syntax.
Also used for denoting brief examples in a paragraph.

Vertical Separator Bar (|)
with underline

Options available with the default value underlined (e.g.,
Y|N).
xvii

ASG-Encore User’s Guide
xviii

1
 1Introduction
This chapter describes Encore program re-engineering analysis, extraction, and
generation functions, and contains these sections:

Encore Advantages
Corporations are increasingly under pressure to perform these functions:

• Integrate and web-enable their applications for better customer relations
management.

• Open up their applications through standards-conforming interfaces for better
supply-chain integration.

• Migrate their applications to newer platforms and technologies for better
throughput, as well as to accommodate the capabilities of a changing labor force.

• Identify, consolidate, and extract processing logic from their applications to explore
alternative implementations.

• Reengineer their applications to improve the accuracy, repeatability, and efficiency
of the maintenance process.

Encore provides automated support to help your IT staff achieve these objectives through
the ability to analyze and report on the information in a program, including data usage,
control flows, and PERFORM and CALL hierarchies. Encore extracts reusable,
functional code fragments from a program and has the ability to package and generate the
code fragments as separate program modules, and also regenerates the original program
to take advantage of the new modules.

Section Page

Encore Advantages 1

Encore Overview 2
1

 ASG-Encore User’s Guide
Encore Overview
Encore is the ESW re-engineering product for COBOL applications and includes these
features:

• Analysis facilities that allow you to extract code based on the most frequently used
re-engineering criteria.

• Code generation facilities that allow you to use the results of the analysis extract to
generate a standalone program, a callable module, and a Complement Module.
Prior to code generation, the extracted Logic Segment can be viewed and modified
using the COBOL editor.

Encore is designed to support these features:

• Web enablement

• Open interface

• Platform and technology migration

• Re-implementation of business functions

• Component-based maintenance

Encore contains a Common User Access (CUA) interface with action bars, pull-down
menus, and pop-up screens that make it easy to learn and use.

Encore Components
Encore is comprised of these four functional components:

• Reengineering analysis

• Code extraction

• Migration

• Target generation
2

1 Introduction
Reengineering Analysis Overview
Encore re-engineering analysis displays the source code in various levels. The
re-engineering analysis component consists of these three displays:

The main purpose of re-engineering analysis is to gather enough information about the
program to make the best decision regarding code isolation and extraction.
Re-engineering analysis is available through the View facility.

Extract Overview
Encore’s main focus is the Extract facility, which addresses the re-engineering aspects of
code renewal, and provides the capability to isolate and extract logical code segments
from existing programs. These are the eight methods used to isolate and extract code:

View Methods Contents of Views

Structure Displays the hierarchical relationships within the program in a
graphical mode. You can zoom in on the actual COBOL source
represented by the graphical display.

Tree Displays the program in logical execution order. This view allows
straightforward analysis of how the program works.

Source Displays the program in source code order and offers
COBOL-intelligent browsing capabilities.

Objective Type Purpose

Perform Range Isolates and extracts a specific named PERFORMed range of code
within the COBOL program. See Chapter 4, "Perform Range
Extract," on page 57 for more details about Perform Range extracts.

Transaction Isolates and extracts all code required for a specific transaction (i.e.,
all code between a start point and multiple end points that is, or
could be, executed based on the values of a data variable). See
Chapter 6, "Transaction Extract," on page 157 for more details
about Transaction extracts.

Computation
Variable

Isolates and extracts all code that calculates a specific data variable
from the beginning of the program to a specific statement in the
program. See Chapter 5, "Computation Variable Extract," on
page 133 for more details about Computation Variable extracts.

Report Isolates and extracts all code necessary to produce a set of identified
output (WRITE) statements. See Chapter 7, "Report Extract," on
page 181 for more details about Report extracts.
3

 ASG-Encore User’s Guide
Migration
The most basic feature of Encore is to convert an existing MVS COBOL application to a
component-based architecture. Encore provides these capabilities for migration:

• Clear separation of user interface and data access code from the business logic.

• Removal of redundant logic.

Target Generation Overview
Target generation addresses the disposition of the segment created in the code extraction
phase. For target generation, Encore provides these capabilities:

• Separate program generation.

• Callable module generation.

• Complement module generation consisting of the original program with the
extracted Logic Segment removed.

• IO module generation containing all input/output functions for an FD (File
Description).

• Logical COBOL segment access with an editor such as ISPF Edit or SmartEdit for
modification and customization.

• Knowledge retention that helps with everyday maintenance tasks or major system
rewrites.

• Logic Segment extraction used for input to CASE tools.

The target generation environment is a powerful lever against change. When business
needs call for enhancements to a specific function only one Logic Segment is impacted,
dramatically reducing the time required for analysis and change.

Statement Isolates and extracts a user-selected set of COBOL source
statements. See Chapter 3, "Getting Started," on page 23 for more
details about Statement extracts.

Complement Extracts the original program, excluding statements from a
previous extract. See Chapter 4, "Perform Range Extract," on
page 57 for more details about Complement extracts.

Common Code Identifies code common to two or more previous extracts. See
Chapter 4, "Perform Range Extract," on page 57 for more details
about Common Code extracts.

CICS Server Isolates and extracts all code required to generate a CICS server
program. See Chapter 8, "CICS Server Extract," on page 213 for
more details about CICS server extracts.

Objective Type Purpose
4

2
 2Product Overview
This chapter describes the user interface, help facility, multiple views, wildcard patterns,
and COBOL terms, and contains these sections:

Introduction
Encore is an integrated re-engineering environment for COBOL programs. It is designed
to isolate and extract logical COBOL segments from existing programs. The benefits of
Encore enable you to perform these functions:

• Extract the knowledge and investment made in COBOL systems over the years.

• Manage each application by its business rule.

• Forward engineer new enhancements and systems quickly and with higher quality.

Encore operates interactively in ISPF, allowing you to identify, isolate, and extract
logical business functions from COBOL programs. These business functions, or business
rules, can then be saved for later use (e.g., enhancement or code reuse).

Section Page

Introduction 5

Encore User Interface 6

Help Facility 13

Multiple Views 13

Wildcard Patterns 14

Understanding COBOL Terms 14
5

 ASG-Encore User’s Guide
Encore User Interface
The online component of Encore features Common User Access (CUA) screens, action
bars, pull-down menus, and pop-up screens that are designed to provide easy access to all
of the product features.

• An action bar contains a line of keywords, or actions, that display at the top of a
screen. Each keyword represents a category of actions that can be performed on that
screen using a pull-down menu. An action is selected by moving the cursor to the
desired keyword and pressing Enter.

• A pull-down menu is the list that displays when an action is selected on the action
bar. On a pull-down, actions followed by an ellipsis (...) display a pop-up when
selected. Actions not followed by an ellipsis immediately activate internal
commands. There are two ways to select an item on a pull-down:

— Move the cursor to the desired keyword and press Enter.

— Enter the number of the desired action in the input field and press Enter.

• Screens contain a full-width display of information containing a full action bar.
Encore screens are modeled after TSO/ISPF screens.

• A pop-up screen is a screen that displays when an item is selected on a pull-down
menu or another pop-up screen, or as the result of entering certain commands. It is
superimposed on your screen to allow entry of information for the requested action.
Enter the desired data or option and follow instructions on the pop-up to process the
information.-

Note:
Use the END command (default PF3 or PF15) to exit a pull-down or a pop-up without
processing any actions. If the cursor is on the action bar when PF03/15 is pressed, the
cursor is moved to the command input area of the screen.

The Action Bar
The action bar is contained on all Encore screens. Some pop-ups contain a shortened
action bar that contains fewer actions and associated options than are available on the
regular action bar.

Note:
If other ESW products are installed at your site, other actions may appear on the action
bar. For more information about these features of other products see the corresponding
product user’s guide or online help.

Selecting an action is achieved by moving the cursor with the tab, mouse, or arrow keys
to the desired keyword and pressing Enter.
6

2 Product Overview
When you place the cursor on the action bar and press PF3/15 (END), it is moved to the
command line on the screen (Command = = =>). If the cursor is on a full screen, pressing
HOME moves the cursor to the first action on the action bar.

Figure 1 shows the action bar on the Encore primary screen.

Figure 1 • Action Bar Format (Encore Primary Screen)

Actions

Action Description

File Displays the File pull-down, which is used to open and close
programs, save Logic Segments and Equates for the current
program, analyze programs prior to use by Encore, manage the
AKR, edit COBOL source programs, execute script files, fix AKR
program anomalies, and to exit Encore.

View Displays the View pull-down, which is used to view a program,
Logic Segment, or complement; view program information and
display or exclude source according to the program hierarchical
structure; change the level of information viewed; reset the
display; and exclude source from the display.

Extract Displays the Extract pull-down, which presents various available
task-oriented extract options.

Generate Displays the Generate pull-down, which is used to create a
program or callable module, build an IO module, perform a Batch
Computation, generate a CICS server, and to print or punch the
Logic Segment.

Search Displays the Search pull-down, which is used to conduct a
COBOL intelligent search of the source code for one or all
occurrences of a specified target.
7

 ASG-Encore User’s Guide
See the ASG-Encore Reference Guide for more information about the functions available
on these pull-downs.

Logic Displays the Logic pull-down, which is used to follow the
execution of a program, searching for a specific target.

Note:
The appearance of the Logic menu option on the action bar
depends on whether you have installed other ESW products, such
as Insight. If other products have not been installed, Logic does
not appear on the action bar.

List Displays the List pull-down, which is used to access prompt list
pop-ups that list information about calls, equates, performs,
programs, subsets, and segments.

Options Displays the Options pull-down, which is used to customize the
Encore environment.

Help Displays the Help pull-down, which is used to access the online
help facility.

Action Description
8

2 Product Overview
Pull-Down Menus
A pull-down menu is displayed in an existing window when you select an action on the
action bar. There are two types of actions on pull-downs:

• An action followed by an ellipsis (...) displays a pop-up when selected.

• An action not followed by an ellipsis, which immediately activates an internal
command and usually re-displaying the previous screen.

For example, on the File pull-down (Figure 2), these actions display a pop-up when
selected:

• Open

• Save segment

• Analyze

• AKR utility

• Edit program

• Execute script

• Anomaly facility

Figure 2 • Pull-Down Format

These actions do not display a pop-up, but rather immediately process the associated
internal command:

• Close

• Save equates

• Exit
9

 ASG-Encore User’s Guide
Screens
A screen is a full-width display of information containing a full action bar. Encore
screens are modeled after TSO/ISPF screens.

The various parts of the Source View screen are identified by the alphabetic letters shown
in Figures 3.

Figure 3 • Screen Format (Source View Screen)

10

2 Product Overview
Fields

See the online help for more information about Encore commands.

Field Description

A The action bar is displayed at the top of the screen.

B The name of the screen.

C VIARDEMO - The name of the active program. A program must be open for
this field to be displayed. This area of the screen is also used to temporarily
display short informational or error messages.

D The command input area (command line), used to enter Encore primary
commands.

E Specifies the number of screen lines or columns to scroll. This field is
omitted on screens that cannot be scrolled, such as the primary Encore
screen. These are the scroll values:
• 1-9999 A number from 1 to 9999 can be entered to specify the

number of lines or columns to scroll.

• CSR Specifies a scroll value of one page from the cursor location.

• DATA Specifies a scroll value of one less than a page.

• HALF Specifies a scroll value of one half page.

• MAX Specifies a scroll value of the top, bottom, right or left
margin.

• PAGE Specifies a scroll value of one page.

F The long message area contains descriptive, information, or error messages.
Long messages are displayed when there are no corresponding short
messages, or when HELP is entered in the command input area while a short
message is displayed.
11

 ASG-Encore User’s Guide
Pop-Up Screens
Figures 4 show an example of a pop-up screen that displays when you select an item on a
pull-down or pop-up, or as the result of entering certain commands. A pop-up is
superimposed over a screen, has a border, and usually does not have an action bar. Each
pop-up contains one or more fields.

Follow the instructions on a pop-up to process the information. Use the END command
(default PF03/15) to exit from a pop-up without processing the actions you have
performed.

Figure 4 • Pop-Up Format (View - Tree View Request Pop-Up)

Fields

Field Description

Text Entry
Fields

Used to type textual information, such as a data name, program
name, etc. The length of each text entry field is designated by an
underline. Name is an example of a text entry field shown in
Figure 4 on page 12.

Selection Fields

Numbered
Selection Fields

Allows selection of one item from a list. Enter the number of the
desired selection in the field input area to the left of the first
numbered item. Contents is an example of a numbered selection
field shown in Figure 4 on page 12.
12

2 Product Overview
Help Facility
Encore has extensive Help facilities. Help is available for screens and pop-ups,
commands, general information, specific information, abends, messages, and fields on
certain pop-ups.

The Help Tutorial is a topic-driven sequence of display-only screens that describe the
features and capabilities of Encore. These descriptions include an overview of Encore
and its main features.

Help for screens and pop-ups describes their purpose, why they are displayed, a
description of each field, and the required input.

Help for commands describes the purpose of each command, displays the command
syntax diagram, and describes each operand and its values.

Help is also available for some input fields on certain pop-ups unique to Encore. Enter a
question mark (?) in a field to view the help screen for that field. The field help screen
describes the field and lists valid input values. The desired value can be entered on this
help screen. When the product screen is redisplayed, the entered value displays in the
proper field.

Multiple Views
The View facility presents various displays of an existing COBOL source program.
Program information can be presented in a graphic structure, logical execution, or source
code format. This facility is used to examine the program to become more familiar with
the program structure and functions, or to increase understanding of the program prior to
making a change or extracting a Logic Segment.

Unnumbered
Selection Fields

Selected by entering a forward slash (/) in the field input area, and
unselected by entering a blank space to remove the slash.
Repetition is an example of an unnumbered selection field shown
in Figure 4 on page 12.

Field Input
Area

A field input area is designated by an underline. When a pop-up is
first displayed, each field contains its default value. On some
pop-ups, if the default is changed the new value is retained for
subsequent sessions.

Field Description
13

 ASG-Encore User’s Guide
These are the three available view methods:

Wildcard Patterns
For some Encore screens, there are fields that require the entry of names. If the name field
is left blank, a selection list is displayed. Encore provides the ability to enter wildcard
patterns to reduce the selection list.

These are the wildcard pattern matching characters:

• The question mark (?) character matches any one character.

• The asterisk (*) character matches zero or more characters.

Performing a search using the wildcard format is only valid for those name fields that are
explicitly noted.

Understanding COBOL Terms

Sets
A set is a grouping of source lines in a COBOL source program. Sets consist of subsets
and line range sets. Many Encore commands make use of one or more of these sets or
subsets. In addition, sets can be concatenated by placing a plus sign (+) between them.
For example, this set would highlight the set of lines containing IO statements and
PARAGRAPH labels:

HIGH IO + PAR

View Methods Contents of Views

Structure Displays the hierarchical relationships within the program in a
graphical mode. You can zoom in on the actual COBOL source
represented by the graphical display.

Tree Displays the program in logical execution order. This view allows
straightforward analysis of how the program works.

Source Displays the program in source code order and offers
COBOL-intelligent browsing capabilities.
14

2 Product Overview
Subsets
These are the types of subsets:

• COBOL language subsets

• Screen subsets

• Tagged lines subsets

Use the LIST SUBSETS command or select List Subsets to display the List - COBOL
Subset Names pop-up, which describes each subset.

COBOL Subsets
Encore classifies COBOL statements into subsets by grouping together COBOL verbs of
a similar nature. For example, you could refer to any lines that contain READ, WRITE,
OPEN, or CLOSE verbs by using the COBOL language subset name IO.

The COBOL subsets and their corresponding entities are described in Tagged Line
Subsets.

Screen Subsets
Screen subsets are generally the result of an interactive search request. To specify one of
these subsets, enter the entire name or the minimum abbreviation, as indicated by these
upper case letters:

HIghlighted = HI

NONHighlighted = NONH or NHI

EXcluded = EX or X

NONExcluded = NONE or NX

Tagged Line Subsets
Tagged line subsets are displayed in columns 73 through 80 of the Source View screen.
Search results show tags in Source View. Source View also marks data items that are
never referenced, tags statements that contain dead code, tags program exits, and tells you
if PERFORMed paragraphs fallthrough or return.

This tagged line subset, which refers to all lines that have information tags on them, can
be used as a subset in commands that accept subsets as targets:

TAGged
15

 ASG-Encore User’s Guide
This table contains COBOL subsets that accept tagged line subsets are targets:

COBOL Subsets Description

ASSIGNMENT Statements that assign a value to a data item, (e.g., MOVE, ADD,
or COMPUTE).

CALL Statements related to subprogram calls such as CALL and
CANCEL.

CICS Any CICS (Customer Information Control System) or DL/I
command-level commands.

COBOLII COBOL II, including CONTINUE, END, and INITIALIZE
verbs.

COBOL/370 Statements and clauses unique to COBOL/370, such as intrinsic
function calls, procedure pointers, and calls to the LE/370
run-time environment.

COMMENT Statements having no run-time effect, such as all lines with an
asterisk (*) in column 7, the entire IDENTIFICATION
DIVISION, and NOTE statements.

CONDITIONAL Statements or parts of statements that conditionally change the
flow of control in a program such as IF, ELSE, and WHEN.

COPY | INCLUDE COPY, COPY IDMS, SQL INCLUDE, ++INCLUDE, and -INC
statements.

DB2 | SQL EXEC SQL statements.

DDL SQL Data Definition Language statements, such as CREATE,
ALTER, DECLARE, and DROP.

DEAD Statements containing dead code and dead data.

DEADCODE Statements containing code that cannot be executed under any
conditions.

DEADDATA DATA DIVISION statements containing data names and their
aliases that are not referenced in the PROCEDURE DIVISION.

DEBUG Statements containing a DEBUG, EXHIBIT, ON, READY, or
RESET verb, as well as statements containing a D in column 7.

DEFINITION Declaratives of data items including the SPECIAL-NAMES
paragraph in the ENVIRONMENT DIVISION and the entire
DATA DIVISION.
16

2 Product Overview
DIRECTIVE Statements that direct the compiler to take specific actions during
compilation such as BASIS, EJECT, and TITLE.

DL/I | DL/1 EXEC DL/I commands, ENTRY 'DLITCBL', and CALL
'CBLTDLI'.

DML SQL Data Manipulation Language statements, such as SELECT,
UPDATE, INSERT, and COMMENT.

ENTRY The PROCEDURE DIVISION statement and all ENTRY
statements.

EXIT | PGMEXIT Statements containing a STOP RUN, GOBACK, or EXIT
PROGRAM verb, and CALL statements that are indicated as
NORET (non-returning).

FALLTHROUGH Statements of PERFORMed paragraphs or units that fall through
to the next paragraph.

GOTO Statements containing an ALTER or GOTO verb.

IDMS IDMS statements.

INPUTOUTPUT
IO
INPUT
OUTPUT

COBOL IO statements (IO, Input, or Output) including CALL
statements that are indicated as containing IO, Input, or Output.

LABEL
DIVISION
PARAGRAPH
SECTION

Statements containing DIVISION or SECTION headers or
PARAGRAPH labels. LABEL refers to the PROCEDURE
DIVISION line and all section and paragraph names in the
PROCEDURE DIVISION.

MAINLINE Mainline code statements that are reachable from the
PROCEDURE DIVISION line to the program units by following
FALLTHROUGHs and GO TOs, but not PERFORMs.

MATH Statements containing arithmetic operators and verbs.

PERFORM Statements containing the PERFORM, SORT, or MERGE verbs.

RETURN Statements of a PERFORMed paragraph range that return
control.

SORTMerge SORT/MERGE statements and related IO procedures.

COBOL Subsets Description
17

 ASG-Encore User’s Guide
Targets
A target is the object of an Encore primary command. Targets are defined in these
categories:

• Label name

• Perform range name

• Program name

• Subset name

• Line range

• Paragraph name

• Data name

• Pattern string

Label Name
A label name is any paragraph or section name of the PROCEDURE DIVISION, as well
as the literals PROCEDURE and PROC. Label name specifies all transfers of control to a
paragraph or section.

Perform Range Name
A Perform Range name is the name specified in a PERFORM statement. The Perform
Range consists of the source code contained in the PERFORM statement, and includes all
code that is, or could be, executed as a result of GO TOs, PERFORMs, etc., within that
PERFORM. The name of any section contained in the DECLARATIVES can also be
specified.

STRUCTURE A group of COBOL subsets that, together, help show the general
structure of the program. These COBOL subsets include CALL,
PERFORM, DIVISION, SECTION, PARAGRAPH, EXIT, and
GO TO.

TESTED Identifies the lines of code that have been tested based on
information created and updated with TCA reports. This is only
applicable to SmartTest and Insight program views.

UNTESTED Identifies the lines of code that have not been tested based on
information created and updated with TCA reports. This is only
applicable to SmartTest and Insight program views.

COBOL Subsets Description
18

2 Product Overview
Program Name
A program name is the name of the main program or any nested program, and includes all
the source code contained in the program. This includes all programs physically nested
inside the specified program.

Subset Name
A subset name is one of the COBOL language subsets, screen subsets, or tag subsets
previously described in "Screen Subsets" on page 15 .

Line Range
A line range can be a single line or a group of lines. Line ranges are specified by placing
a - (hyphen) between the first and last line numbers in the range (e.g., 214-376).

Line numbers are shown in the first six columns of the Source View screen. If the
specified line number is greater than the last line in the program, the last line is assumed.

Paragraph Name
A paragraph name is any paragraph or section name of the PROCEDURE DIVISION, as
well as the literals PROCEDURE and PROC. Paragraph name includes the entire
paragraph or section.

Data Name
A data name can be any of these items:

• Elementary data name

• Table name

• File name

• Table element name

• Group name

• Special name

Any legal COBOL reference for a data element can be specified as a data name. If a
variable is redefined to another name, Encore searches for the specified variable name
and the redefined name. Any reference to an entry in a table is treated as a reference to the
entire table. When data items overlap so a name can refer to parts of multiple data items,
searches are performed on each part and all references are reported. For example, if a
group item is specified in a search command, references to the group item, as well as the
individual elements within the group are located. This is also true of modifications, uses,
or references to the data item. Encore locates valid references to the variable item as
opposed to simple pattern matching of the characters in the variable name. These
references are called aliases.
19

 ASG-Encore User’s Guide
Fully-qualified data names can be specified by following them with a standard COBOL
OF clause, followed by the group level data name. For example:

DATA-NAME-ELEMENT OF DATA-NAME-GROUP

or for COBOL II Release 3 (minimum supported release level) programs:

DATA-NAME-ELEMENT OF SUBPROGRAM

Multiple data names can be located at the same time by concatenating the data names
with a plus sign (+) between them. For example:

DATA-NAME1 + DATA-NAME2

Data names can be specified with one of these subordinate operands:

Note:
The FINDXTND primary command also offers ALIAS/NOALIAS operands. ALIAS
includes all aliases for the specified data name and is the default.

Operand Description

MODIFICATION Occurrences of a data item where its value is being set or
altered.

USE Occurrences of a data item where its value is being tested or
used.

DEFINITION Definitions of a data item and its aliases as specified in the
DATA DIVISION.

REFERENCE All MODIFICATION and USE occurrences.
REFERENCE also includes DEFINITION occurrences on
some commands. This is the default usage for data names.
20

2 Product Overview
Pattern String
A pattern string is a sequence of characters. Strings of non-alphanumeric characters can
be specified by the HEX, TEXT, and PICTURE operands. The string can be further
qualified using the WORD, PREFIX, or SUFFIX subordinate operands.

String Description

X'string' A hexadecimal string, enclosed in single or double quotes.

T'string' A text string, which disregards upper and lowercase,
enclosed in single or double quotes.

P'string' A picture string, enclosed in single or double quotes. These
are the valid picture strings:
• P'=' Any character

• P'¬' Any nonblank character

• P'.' Any nondisplay character

• P'#' Any numeric character

• P'- ' Any non-numeric character

• P'@' Any alphabetic character (upper or lowercase)

• P'<' Any lowercase alphabetic character

• P'>' Any uppercase alphabetic character

• P'$' Any special character (not alphabetic or
numeric)

WORD A string preceded and followed by any non-alphanumeric
character (except a hyphen).

PREFIX A word that begins with the specified string.

SUFFIX A word that ends with the specified string.
21

 ASG-Encore User’s Guide
22

3
 3Getting Started
This chapter describes how to initiate an Encore session, define user options, allocate an
AKR, analyze a COBOL program, code extraction objectives, and Complement Module
contents, and contains these sections:

Introduction
This chapter is intended for new Encore users, and describes fundamental tasks, such as
invoking an Encore session, and the preliminary tasks you need to perform prior to using
Encore.

Section Page

Introduction 23

Starting an Encore Session 25

Defining User Options 26

Allocating an AKR 33

The Analyze Facility 36

Decomposition 40

Clean-Up Tasks 45

Complement Module Contents 45

The Demonstration Program 49
23

 ASG-Encore User’s Guide
The steps necessary to invoke Encore vary by site, so check with the systems
administrator at your facility for startup and user profile information. Before following
along with the sample Encore session presented in this section, you should review
Chapter 1, "Introduction," on page 1 and Chapter 2, "Product Overview," on page 5 to
become familiar with the terminology used by Encore.

You must define some of Encore’s parameters the first time you activate the product. The
first part of this section describes these functions:

• Activating an Encore session.

• Setting and verifying these user options from the Options pull-down:

— Online operations parameters on the Options - Parameters Definition pop-up.

— Log, List, Punch, and Work file allocations on the Options - Product Allocations
pop-up.

— Log, List, and Punch file processing options and provide a Job card on the
Options - Log/List/Punch Definition pop-up.

— PF key values.

• Allocating an AKR.

• Analyzing a program.

See "Starting an Encore Session" on page 25 .

The second part of this section deals with pre and post decomposition tasks and contains
a listing of VIARDEMO, one of the demonstration program used in the other task
oriented sections of the ASG-Encore User’s Guide. See "Decomposition" on page 40 .

See the online help for detailed information about the screens and fields that are used in
these sections.
24

3 Getting Started
Starting an Encore Session

To start the Encore session, you need to access the ESW Primary screen and open the
Encore application. See Chapter 4, "Perform Range Extract," on page 57 for specific
logon instructions

Note:
Logon procedures and AKR information are unique to your programming environment.
If necessary, contact your systems administrator or your Encore coordinator for the
correct dataset names.

If your site starts Encore directly, use the ISPF selection or CLIST as indicated by your
systems administrator. After you activate the session, the Encore Primary screen displays,
as shown in Figure 5.

Figure 5 • Encore Primary screen

Note:
When this screen initially displays, the ASG1676I message displays. This message
displays every time you access this screen in startup mode. To turn the message off, press
Enter to display the Encore CUA feature screen and type NO in the Display the "CUA
INFORMATION" message (at entry) in the future entry field. Press Enter to return to the
Encore Primary screen.
25

 ASG-Encore User’s Guide
Defining User Options
The first time you enter Encore, you should customize the options to reflect the
appropriate settings for your environment. Some options are initially set to default values
established during product installation by the systems administrator.

Figure 6 shows the Options pull-down, which is used to customize the Encore
environment. Customization includes these tasks:

• Setting and verifying online operations parameters on the Options - Product
Parameters pop-up (see Figure 7 on page 27).

• Setting and verifying the Log, List, Punch, and Work file allocations in the
Options - Product Allocations pop-up (see Figure 8 on page 28).

• Setting and verifying Log, List, and Punch file processing options and providing a
Job card on the Options - Log/List/Punch Definition pop-up (see Figure 9 on page
29).

• Setting and verifying PF key values.

• Setting the default view.

• Setting and verifying output and formatting options for generated COBOL
modules.

Select Options on the action bar to display the Options pull-down. See the online help for
more information about the Options available in Encore.

Figure 6 • Options Pull-down
26

3 Getting Started
Setting Online Operation Parameters

To set online operation parameters

1 Select Options Product Parameters and press Enter to display the Options - Product
Parameter Definition pop-up, as shown in Figure 7.

Figure 7 • Options - Product Parameter Definition Pop-up

2 Type the appropriate information in the fields and press Enter.

See the online help for more information about the fields on this pop-up.
27

 ASG-Encore User’s Guide
Allocating Log, List, Punch, and Work Files
Use the Options - Product Allocations pop-up (see Figure 8) to set or verify the DASD
volumes for the Log, List, Punch, and Work files. Some options are initially set to default
values established during product installation by the systems administrator.

To define the Log, List, Punch, and Work file DASD allocations

1 Select Options Product Allocations and press Enter to display the
Options - Product Allocations pop-up.

Figure 8 • Options - Product Allocations Pop-up without SMS

2 Type the appropriate information in the fields and press Enter.

See the online help for more information about the fields on this pop-up.
28

3 Getting Started
Setting Log/List/Punch Processing Options
Use the Options - Log/List/Punch Definition pop-up (see Figure 9) to set the processing
values for the Encore Log, List, and Punch files. These files are used for system message
logging, error handling, and holding the results of several Encore commands. It is not
necessary to exit Encore to process these files. Some options are initially set to default
values established during product installation by the systems administrator.

To specify the Log/List/Punch Definition options

1 Select Options Log/List/Punch and press Enter to display the
Options - Log/List/Punch Definition pop-up.

Figure 9 • Options - Log/List/Punch Definition Pop-Up

Note:
When the PK or PD process option is specified, you must enter a valid job card in
the Job statement information field prior to processing any Log, List, or Punch files.

2 If you specify the K or PK process option, you can customize the dataset where the
log, list, or punch file is allocated. By default, Encore allocates the Log, List, and
Punch files as USERID.ENTnnnnn.VIAxxxxx, where nnnnn is a sequential
number from 00001 to 99999 and xxxxx is LOG for Log, LIST for List, and
PUNCH for Punch files. If you have specified a TSO Prefix, the prefix is appended
to the beginning of the file name allocated for the Log, List, and Punch files.
29

 ASG-Encore User’s Guide
3 Type 4 on the command line and press Enter to display the Options - Log/List/Punch
Name Customization pop-up, as shown in Figure 10.

Figure 10 • Options - Log/List/Punch Name Customization Pop-up

4 Type U in the File Naming field for Log, List, or Punch to indicate a user-defined
dataset name. If you specify N in the Prompt later for DSN field, you must enter a
dataset name in the corresponding Data set name field and specify O (overwrite) or
A (append) in the File Mode field.

If you specify Y in the Prompt later for DSN field, Encore prompts you for the
dataset name during file processing.

See the online help for more information about the fields on this pop-up.
30

3 Getting Started
Mapping PF Keys

To display or map your PF Keys

1 Select Options PF Keys and press Enter to display the Options - PF Key Definition
pop-up, as shown in Figure 11.

Figure 11 • Options - PF Key Definition

2 Type the appropriate PF key values in the fields. PF keys 1 through 12 are displayed
initially. Press Enter to display PF keys 13 through 24.

See the online help for more information about the fields on this pop-up.
31

 ASG-Encore User’s Guide
Options - Generate Pop-Up

To specify output and format settings for generated COBOL modules

1 Select Options Generate and press Enter to display the Options - Generate pop-up,
as shown in Figure 12.

Figure 12 • Options - Generate Pop-Up

2 Type a forward slash (/) in the appropriate fields and press Enter.

See the online help for more information about the fields on this pop-up.
32

3 Getting Started
Allocating an AKR

To allocate an AKR

1 Select File AKR Utility and press Enter to display the File - AKR Utility pop-up,
as shown in Figure 13.

Figure 13 • File - AKR Utility Pop-Up

2 Specify the dataset name of an AKR in the Data set name field.

3 Type A in the command input area and press Enter to display the File - AKR
Allocate/Expand pop-up (see Figure 14 on page 34).

Note:
Four possible pop-ups may display because both BDAM and VSAM AKRs are
supported. The pop-up that displays depends on whether you use BDAM or VSAM
AKRs and whether SMS is used at your site.
33

 ASG-Encore User’s Guide
4 Enter the appropriate information in these required fields (see Figure 14):

a Type No in the Expand existing AKR field.

b Specify the AKR name in AKR data set name field.

c Specify a valid job card in the Job statement information field.

Figure 14 • File - AKR Allocate/Expand Pop-up

See the online help for more information about the fields on this pop-up.

5 Submit the JCL to allocate the AKR using one of these methods:

a Submit the JCL by typing S on the command line and pressing Enter.

Or

b Edit the JCL by typing E on the command line and pressing Enter. While in the
editor, make the appropriate modifications and enter the TSO command
SUBMIT (or SUB). Return to the File - AKR Allocate/Expand pop-up by
entering the END primary command or pressing PF3.

6 Verify the AKR allocation results by examining the job output.
34

3 Getting Started
Verifying AKR Allocation Results
After the AKR allocation batch job has completed, review the job output to verify
successful allocation and initialization. Figure 15 and Figure 16 show output excerpt
examples with messages that indicate successful VSAM AKR allocation and
initialization.

Figure 15 • AKR Utility Log - Initialization Message Output

Figure 16 • AKR Utility Log - Summary Message Output
35

 ASG-Encore User’s Guide
The Analyze Facility
You must analyze a program before Encore can provide intelligent information about it.

The analyze process gathers information about a program, including program
relationships, logic data, and execution paths, and stores this information in the AKR.
After the analyze information is placed in the AKR, it is available to Encore in an online
environment, where it is accessed to provide valuable information about the design and
operation of the program.

Program Analyze Requirements
A Program Analyze is similar to a COBOL compile. Like a compile, these basic program
standards are required:

• The correct COBOL language as specified in the IBM COBOL II Language
Reference and the IBM COBOL for MVS and VM Guides.

• Programs that can be compiled without errors by the IBM COBOL II compiler.

— COBOL II programs that receive error (E), severe (S), or unconditional (U)
messages from the IBM compiler cannot be successfully analyzed.

Program Analyze Input
Input to the Program Analyze function includes these items:

• JCL to compile the program.

The JCL should be the complete JCL used to compile the program, and should
perform these steps:

— Retrieve the source from the source manager (such as Librarian or Panvalet)

— Execute any pre-processors

— Invoke the compiler

Note:
Encore does not require the program to be compiled or linked for analysis.

• Program Analyze features that indicate the type of analysis to be performed.

• An initialized AKR to receive Program Analyze output.

• Program Analyze options.
36

3 Getting Started
Analyzing a Program through Encore
The File - Analyze Submit pop-up is used to specify the analyze information and to
submit a program to be analyzed through Encore.

Note:
If the compile JCL resides in a source manager such as Librarian or Panvalet, you cannot
use this method. See the online help for additional information.

To analyze a program

1 Select File Analyze and press Enter to display the File - Analyze Submit pop-up,
as shown in Figure 17.

Figure 17 • File - Analyze Submit Pop-up

2 Enter this information in the required fields:

a Specify the PDS member or sequential dataset containing the compile JCL in
the Data set name field.

b Specify the analyze feature by typing Y beside Encore in the Analyze features
(Y/N) fields.

Note:
If Encore is the only product installed, this field may not be changeable and is
automatically set to Y. Other analyze features are available on the Analyze Submit
pop-up when additional ESW products are installed at your site.
37

 ASG-Encore User’s Guide
Optionally, specify analysis report parameters that are used to produce analysis
reports that help you understand and diagnose analysis problems and anomalies.
You can also enter a different analyze parameter to use the Anomaly Repair Facility
to correct certain anomalies that may exist within your code. These are the available
parameters:

• Analysis/anomaly report parameters:

— VIARERPT - Specifies that the analysis process stops after an analysis
report is generated.

— VIARERPTAN - Specifies that the analysis process continues after an
analysis report is generated and save the information in the AKR.

— NUMPRM(##) - Determines the number of parameters to allow before a
CALL is listed on the Excessive Parameter List report.

— RPTCEN - Centers the generated report (the default format for all reports
is left justified).

• Anomaly Repair Facility parameter:

— VIAANOMF - Instructs the analyzer to run the Anomaly Repair Facility.
This is the batch method for anomaly repair. You can also select the online
method by using the Anomaly Facility - Batch Submit screen accessed
from the File pull-down menu. This parameter can be followed by
additional anomaly report parameters, as shown in this example:

VIAANOMF,PARM(DEBUG1),ANOMALY(OOPGT,GTF,IPR),
COMMENT(YES),DSN(’ASG.ANOMALY.REPAIRED.CODE’),
MEM(MEM1),HEADER(YES)

See the online help and the ASG-Encore Reference Guide for more
information about these parameters and the Analyze option field.

c Specify the AKR dataset name in the AKR data set name field.

3 Submit the JCL to compile and/or analyze by using one of these methods:

a Typing S in the command input area and pressing Enter.

Or

b Edit the compile JCL by typing E in the command input area and pressing
Enter. While in the editor, make the appropriate modifications and issue the
TSO command SUBMIT (or SUB). Press PF3 to return to the File - Analyze
Submit pop-up.

4 Verify the analyze results by examining the job output.
38

3 Getting Started
Verifying Analyze Results
After the Analyze batch job has completed, review the job output to verify results. The
output should be checked for these results:

• Acceptable compiler results, if requested.

• Messages indicating the program has been successfully analyzed and stored in the
AKR. Storage in the AKR does not occur if the program does not analyze
successfully.

Figure 18 is an example of an output excerpt indicating a successful analyze.

Figure 18 • Example of an Output Excerpt from a Successful Analyze Job

where:

Field Description

A A message (ASG0248I) indicating that program VIARDEMO was
successfully stored in the AKR.

B The area that contains any associated program diagnostics.
39

 ASG-Encore User’s Guide
Decomposition
Decomposition is the process of separating an applications code into smaller, related
subgroups that are more manageable. These subgroups are fully functional and retain
limited interaction with other decomposed subgroups.

This section explains the preparation process for using Encore. The explanation also
describes the types of Logic Segments that can be extracted and the contents of
Complement Modules.

Before you can begin decomposition, you must perform these preliminary tasks:

• "Defining Your Desired Goals" on page 41 .

• "Selecting a Program for Decomposition" on page 41 .

• "Program Cleanup" on page 41 .

• "Choosing a Code Extraction Objective - The Logic Segment" on page 42 .

• "Establishing a Project Notebook" on page 44 .

You should be familiar with these terms when using Encore:

• Logic Segment

• Complement Module

• Data name references

• Data name aliases

• Subsets

See Chapter 2, "Product Overview" on page 5 or the online help for a complete definition
of these terms.
40

3 Getting Started
Defining Your Desired Goals
You must define your desired goals for re-engineering. These are some common goals:

• Extracting common code into a standalone, shared module.

• Splitting programs into smaller, easier to maintain modules.

• Reducing or eliminating GOTOs.

• Eliminating obsolete code from programs.

• Building a library of common or reusable code.

Defining an objective promotes a common vision of what is to be accomplished by all
project participants. This common vision guarantees project acceptance at all levels and
helps to propagate subsequent decomposition activity.

Selecting a Program for Decomposition
For your initial decomposition exercise, it is recommended that you select a medium
sized program. The best type of program would be one that is of strategic value to your
company, in need of re-engineering, and contains multiple functions. Ideally, the program
should also contain code common to several other programs for the purpose of eventually
isolating that common code into a standalone or callable module.

There is a learning curve for understanding Encore, so you want to avoid complex
programs that may overwhelm the project team and not show success in a relatively short
period of time. Expertise comes with repetition and each program decomposition serves
as a building block of knowledge for the next one.

Program Cleanup
Before analyzing Encore, you need to resolve existing program abnormalities whenever
possible. These would consist of live exits, out of PERFORM transfers, and dead code or
dead data. Also give 01 Fillers in the Data Division meaningful names so that data names
used for CALLs between complement and segment modules can be more easily
reconciled later on.
41

 ASG-Encore User’s Guide
Choosing a Code Extraction Objective - The Logic Segment
In decomposition, it is sometimes difficult to be able to determine which extract objective
to use. One method you can use is to determine the best way to focus on the code you
want to change. You can perform these types of code extracts:

• Perform Range extract

• Transaction extract

• Computation Variable extract

• Report extract

• Statement extract

• CICS server extract

Perform Range Extract
A Perform Range extract is all of the code that could be executed by a PERFORM
statement. It includes all of the statements in the paragraph range of the PERFORM, plus
any subordinate code that is PERFORMed or reachable by GOTOs within this paragraph
range.

If the program is already well structured, the logic in question could already be inside one
or more PERFORM ranges. A good candidate for the PERFORM range extract should
possess these characteristics:

• Contains or invokes a large amount of code.

• Performs many times or from many other units.

• Contains all of the IO statements for a certain file.

• Contains many nested PERFORMs that are not shared by others, so that it is well
isolated from the rest of the program.

• Contains a small number of 01-level structures that are serviced only by this code.

A Perform Range extract can be used to reduce the size of a program, dividing it into
separately called subroutines that can be separately compiled.

See Chapter 4, "Perform Range Extract," on page 57 for more information about Perform
Range extracts.
42

3 Getting Started
Transaction Extract
A Transaction extract contains all of the code that can be reached from a designated
starting point to a designated ending point when selected conditions are true or false as
you have stated they would be. A typical example of its use is to extract the code that is
executed when a certain transaction code variable has a specific value. You would first
select the variable and Encore would then display the conditional statements associated
with that variable. The logic path extracted would depend on whether you specify those
conditional statements to be only true, only false, or true or false.

You can also use a transaction extract to simplify a large program that does not use
PERFORMs, in which case the code falls through from top to bottom. If you can identify
both a starting point and an ending point for the portion of the program that you are
interested in, you can isolate all of the code that is executed within those boundaries.

See Chapter 6, "Transaction Extract," on page 157 for more information about transaction
extracts.

Computation Variable Extract
A Computation Variable extract locates the minimum set of statements that contribute to
the value of a data variable at a point in the program, while excluding all other code in the
program. For example, Figure 19 shows an extract of the ACTION-CODE variable at
line 80.

Figure 19 • Computation Variable Extract Example

Lines 10, 30, 40, 70 and 80 are extracted because of these reasons:

• The value of ACTION-CODE at line 80 is determined by the computation at line
70, which depends on the variable ACTION-PARM-C.

• The value of ACTION-PARM-C depends on lines 30 and 40.

• The value of ACTION-PARM-C at line 40 depends on the value of
ACTION-PARM-A, which is determined at line 10.

A Computation Variable extract can also be used to create a called module that calculates
the value of a data variable, or determines the actual set of computations used to set a
variable.
43

 ASG-Encore User’s Guide
See Chapter 5, "Computation Variable Extract," on page 133 for more information about
Computation Variable extracts.

Report Extract
A Report extract locates the minimum set of statements that contribute to the content of
an output file once you have identified the IO statements that produce the file. It is ideally
suited to extract IO statements and associated data to create a standalone program that
creates only that file, or to create a standalone program that omits the creation of the
extracted file.

See Chapter 7, "Report Extract," on page 181 for more information about Report extracts.

Statement Extract
A Statement extract should be used only when no other type of extract objective is
suitable. This would be the case if the code in a program is so convoluted and intertwined
that is makes other extract objectives impossible. The Statement extract allows you to
select an arbitrary set of unrelated statements at your discretion.

CICS Server Extract
A CICS server extract locates all of the necessary statements, files, and data elements
required to create a CICS server extract program. This program is then used to create a
COMMAREA-based server program from a CICS pseudo-conversational program.

See Chapter 8, "CICS Server Extract," on page 213 for more information about CICS
server extracts.

Establishing a Project Notebook
At this point, you should establish a project notebook for step-by-step documentation of
the ongoing process. This documentation becomes a flexible, working document for
future Encore decomposition projects within your organization. The project notebook
serves as an excellent source for preparing internal decomposition presentations that are
likely to follow project completion. If properly maintained, a project notebook provides
substantial time savings for future decomposition projects.

These are other sections to include in the project notebook:

• The Troubleshooting Log should contain entries for all technical problems
encountered and the steps taken to resolve them.

• The Issues Log should chronologically list all functional or procedural issues
resulting from decomposition activity. If properly maintained, these logs
substantially reduce the required completion time of subsequent decomposition
requests.
44

3 Getting Started
Clean-Up Tasks
Once the extract portion of the decomposition project is completed, check to see that the
extracts were successful by verifying these results:

• The resolution of any execution and compilation issues.

• The revision of JCL to reflect the changes for both the affected programs and the
system flow.

• Verification that thorough system integration testing has been performed.

Complement Module Contents
A Complement Module is the original program with the Logic Segment removed. The
purpose of the Complement Module Generation facility is to accurately remove logic
from a program.

Logic is usually removed from a program for one of these reasons:

• The function is no longer necessary.

• The function is processed elsewhere. In this case, the logic may be in a completely
separate program, or may be processed in a CALLed module.

In either case, the code can be removed from the original program.

The accurate definition of a Complement Module depends on the extract objective
selected. The next section describes the complement produced for each extract objective
type.
45

 ASG-Encore User’s Guide
Perform Range Extract
Figure 20 shows a complement that contains all of the statements from the original
program, excluding all of the statements of the Perform Range that are not required by
other logic paths. For example, the original program contains this code:

Figure 20 • Complement Module - Perform Range Extract Example

If A was the Perform Range extracted, the Complement Module would contain all code
except paragraph A, since B and C are also required for a separate execution path.

In addition, the Complement Module replaces a PERFORM of the extracted range with a
CALL statement. A PERFORM VARYING is replaced with a PERFORM of an
Encore-generated SECTION containing the CALL statement.

Report Extract
Figure 21 shows a Complement Module for a report extract objective containing all
statements of the original program, excluding statements of the Logic Segment not
required by other logic paths. For the report extract objective, all identified
WRITE/CALL statements are removed. The resulting program is capable of performing
all functions except the function defined by the Logic Segment. For example, a program
could contain this code:

Figure 21 • Complement Module - Report Extract Example

In this example, lines 10, 20, 40 and 50 represent the Logic Segment for DETAIL1. The
complement of this Logic Segment would be lines 10, 30, and 60. Note that line 10 is
common to another path within the program and, therefore, cannot be removed.
46

3 Getting Started
Computation Variable Extract
The Complement Module for a Computation Variable extract contains all statements of
the original program, excluding statements of the positive Logic Segment not required by
any other logic paths. Because a Computation Variable derivation may be started at any
point in the program, each of these examples and the associated paths are possible. Each
example is based on the type and context of the statement selected as the end point of the
variable.

Example 1
The selected statement is a logical termination of the selected data variable value.
Typically, these are OUTPUT statements and no further uses of the variable are
dependent on the derived value. The resulting Complement Module excludes all code
(from and including the selected statement) back to the beginning of the program that
contributes to or influences the value of the Computation Variable, but retains any code
needed for other functional paths. For example:

DISPLAY data name

The resulting Complement Module excludes all code from, and including, the DISPLAY
statement to the beginning of the program that contributes to or influences the value of
the data name variable, but retains any code needed for other functional paths.

Example 2
The selected statement is a modification or assignment of the data variable selected as the
Computation Variable.

An Encore-generated comment indicates that the value of the Computation Variable
needs to be available at this point in the program so that subsequent dependent statements
(if any) that depend on the variable execute properly. For example:

COMPUTE data name = A + B.

DISPLAY data name.

The resulting Complement Module excludes all code from, and including, the
COMPUTE statement to the beginning of the program that contributes to or influences
the value of the data name variable, but retains any code needed for other functional
paths. The COMPUTE statement is retained as a comment.
47

 ASG-Encore User’s Guide
Example 3
The selected statement is a use of the data variable selected as the Computation Variable
in an assignment statement. An Encore-generated comment indicates that the use of the
Computation Variable is no longer applicable in the statement, and that the statement
should be altered to no longer reference the Computation Variable. For example:

COMPUTE VAR-1 = A + data name.

The resulting Complement Module excludes all code from, and including, the
COMPUTE statement back to the beginning of the program that contributes to or
influences the value of the data name variable, but retains any code needed for other
functional paths. The COMPUTE statement is retained as a comment.

Example 4
The selected statement is a conditional statement that references the data variable selected
as the Computation Variable. An Encore-generated comment is inserted indicating that
the condition being tested must be altered so that it no longer depends on a value of the
Computation Variable so that the IF statements are correctly invoked. For example:

IF data name EQUAL A THEN...

The resulting Complement Module excludes all code from, and including, the IF
statement back to the beginning of the program that contributes to or influences the value
of the data name variable, but retains any code needed for other functional paths. The IF
statement is retained as a comment.

Transaction Extract
The Complement Module for the Transaction extract is defined by identifying the
conditional paths that definitely are, and those that definitely are not, part of the
transaction complement. The transaction complement should be defined to include the
code required to process all transactions other than the one(s) defined for the transaction
objective.

Statement Extract
The Complement Module for the statement selection is defined as the physical
complement. The complement contains all statements not selected on the Statement
Selection screen.

Server Extract
The Complement Module for the CICS server extract is defined as the business logic
component that can be invoked from a web server or other types of clients. The
complement contains all statements required to define a server-side application.
48

3 Getting Started
The Demonstration Program
VIARDEMO is one of the Encore demonstration programs that is used in various
examples to demonstrate the extraction types. It does the month-end calculations for each
type of checking account carried by the Universal Bank.

Note:
VIARBRWS is the Encore demonstration program used for CICS server extraction and
generation. See Chapter 8, "CICS Server Extract," on page 213 for more information.

VIARDEMO processes these two input files:

• The Checking Account master file, a keyed random access file that contains the
records for all checking account customers.

• The Transaction file, which is a sequential file used to update the Checking
Account master.

VIARDEMO generates these two output files:

• An Action file created from the processed transactions that is used as input to
another program.

• The Exception report file that reports all errors encountered during processing.

Figure 22 shows an example of the type of file output generated from the VIARDEMO
program.

Figure 22 • Example of File Output from the Demonstration Program
49

 ASG-Encore User’s Guide
Figure 23 shows how VIARDEMO is called from another program that passes the control
parameters needed for processing.

Figure 23 • Example of Control Parameter Definitions for Demonstration Program Processing

Figure 24 shows how the PROCEDURE DIVISION is written in a structured format,
with all of the processing initiated by PERFORM statements.

Figure 24 • Example of the PROCEDURE DIVISION for the Demonstration Program
50

3 Getting Started
Figure 25 shows how the INITIALIZE-PGM paragraph opens the files and verifies the
parameters passed to VIARDEMO. It also shows how it performs paragraph
GET-NUM-OF-DAYS, which determines the number of days in the current accounting
period.

Figure 25 • Example of the INITIALIZE-PGM Paragraph
51

 ASG-Encore User’s Guide
Figure 26 shows how the ACCT-MAINTENANCE paragraph matches the Checking
Account master and the transaction file, and how it applies maintenance to the Checking
Account master by performing paragraph UPDATE-ACCT THRU
UPDATE-ACCT-EXIT. Processing errors encountered are written to the Exception
report.

Figure 26 • Example of the ACCT-MAINTENANCE Paragraph
52

3 Getting Started
Figure 27 shows how the UPDATE-ACCT paragraph calculates the interest payment to
be applied on interest bearing checking accounts. It also shows how it applies the
monthly service charge for each account, if applicable, and outputs a record to the Action
file. The conditional IF ACCT-TYPE OF ACCT-RECORD = 'MMA' is used to illustrate
the Transaction extract described in "Transaction Extract" on page 48 .

Figure 27 • Example of the UPDATE-ACCT Paragraph
53

 ASG-Encore User’s Guide
Figure 28 shows how the code is used to illustrate the Computation Variable extract
described in "Computation Variable Extract" on page 47 .

Figure 28 • Example of the Computational Variable Extract
54

3 Getting Started
Figure 29 shows how the EXCEPTION-REPORT-1 paragraph lists all accounts with a
minimum balance that is less than the current balance. The highlighted code is used to
illustrate the report extract described in "Report Extract" on page 46 .

Figure 29 • Example of the EXCEPTION-REPORT-1 Paragraph

Figure 30 shows how the GET-NUM-OF-DAYS paragraph calculates the number of days
in the current accounting period. This code is used to illustrate the paragraph extraction
described in "Perform Range Extract" on page 46 .

Figure 30 • Example of the GEN-NUM-OF-DAYS Paragraph
55

 ASG-Encore User’s Guide
56

4
 4Perform Range Extract
This chapter contains a practical demonstration of how to use a Perform Range extract to
create a CALLed submodule and a Complement Module, and contains these sections:

Introduction
In addition to the Perform Range extract demonstration, this chapter also discusses
execution issues and compilation issues.

The Encore demonstration program VIARDEMO is used for the examples in this chapter.
For a partial listing of VIARDEMO, see "The Demonstration Program" on page 49 .

Section Page

Introduction 57

The Business Scenario 58

Starting an Encore Session 59

Extracting the Perform Range 63

Creating the Complement Module 75

Listing of CALCDAYS 81

Extracting Multiple Perform Ranges 85

Understanding Perform Extracts and Common Code 108

Finding Common Code in CALLable Submodules and
Complements

112

Replacing IO Statements with CALLs to an IO Module 115

Generating the IO Module 119

Perform Range Extract Compilation Issues 121

Complement Module Program Listing 128
57

 ASG-Encore User’s Guide
The Business Scenario
Your manager at the Universal Bank tells you that some new programs are being written
for a loan calculation and they need to call a routine to determine the number of days in
the interest accrual period. Since this calculation is probably going to be used in future
programs, you are to make this routine a CALLable submodule.

The Interest Calculation Program (ICP) contains the calculations needed. Using Encore,
the subroutine is extracted from the program and a CALLable subroutine is created. You
need to remove the subroutine from the ICP by using Encore's Complement Module
Generation facility. If the calculations in the interest accrual period routine are changed in
the future, maintenance is only done to the submodule.

By doing some preliminary analysis, you determine that the routine you want is located in
the ICP program that contains the GET-NUM-OF-DAYS paragraph, as shown in
Figure 31, and it's structured as a performed subroutine. In this case, the best extract
objective to use is the Perform Range extract.

Figure 31 • Example Program Containing the GET-NUM-OF-DAYS Paragraph

After performing your initial analysis, you build a checklist that contains these tasks,
which are involved in extracting the Perform Range and generating the CALLed
submodule and the corresponding Complement Module:

• Identify the Perform Range name

• Verify that the Perform Range contains the desired logic

• Extract the desired Perform Range

• Generate the CALLable submodule

• Generate the Complement Module

• Verify the results
58

4 Perform Range Extract
Starting an Encore Session
To start the Encore session, you need to access the ESW Primary screen and open the
Encore application.

Note:
Logon procedures and AKR information are unique to your programming environment.
If necessary, contact your systems administrator or your Encore coordinator for the
correct dataset names.

To open Encore

1 Logon to the ESW Primary screen.

2 Select Re-engineer Program and press Enter to display the Encore Primary screen.

Or

Type EN on the command line and press Enter to display the Encore Primary
screen.

3 Select File Open and press Enter to display the File - Open Program pop-up, as
shown in Figure 32.

Figure 32 • File - Open Program Pop-up
59

 ASG-Encore User’s Guide
4 Type the AKR dataset name in the Data Set Name field and VIARDEMO in the
Program Name field and press Enter.

Note:
A program must be analyzed and placed in the AKR before you can use Encore. For more
information about analyzing a program and placing it in the AKR, see "Getting Started"
on page 23 .

The program is now available to Encore and your next step is to identify the Perform
Range name. This is done by using a Structure View, which is a graphical representation
of logical program units.

To use Structure View

1 Select View Structure and press Enter to display the View - Structure View
Request pop-up, as show in Figure 33.

Figure 33 • View - Structure View Request Pop-up

2 To view the entire program, type 3 on the Levels option of the View - Structure View
Request pop-up and press Enter to display the Structure View screen (see Figure 34
on page 61). It is not necessary to type anything in the Range field (the default is
Procedure Division).

See the online help for more detailed information about the options in the structure
view request pop-up.
60

4 Perform Range Extract
Figure 34 shows that box 007 has the paragraph name GET-NUM-OF-DAYS,
which is the Perform Range you are looking for. You can verify this by examining
the code in the Perform Range from the Structure View screen.

3 Select View Zoom In and press Enter.

4 Place your cursor in box 007 GET-NUM-OF-DAYS and press Enter to zoom in on
the selected data.

Figure 34 • Structure View Screen

Note:
If your PF keys are set to the Encore defaults, you can perform the Zoom In
function by placing your cursor in the graphics box and pressing PF4. See the
online help for more information about PF keys.
61

 ASG-Encore User’s Guide
5 The Zoom In request displays the source lines contained in the
GET-NUM-OF-DAYS paragraph, as shown in Figure 35. Press PF3 to return to the
Structure View screen.

Figure 35 • View - Source Pop-up

The previous Structure View redisplays and the boxes containing the code for the
Perform Range extract are highlighted, as shown in Figure 36.

Figure 36 • Structure View Screen

6 Press PF3 to return to the Encore Primary screen.
62

4 Perform Range Extract
Extracting the Perform Range

To extract the Perform Range GET-NUMBER-OF-DAYS

1 Select Extract Perform Range and press Enter to display the Extract - Name Logic
Segment pop-up, as show in Figure 37.

The Name field contains an Encore created default name for the Perform Range you
want to extract. You can assign your own name to the Logic Segment or you can use
the default name. For this example, use the default Logic Segment name
PERFORM-RANGE-0001.

Figure 37 • Extract - Name Logic Segment Pop-up
63

 ASG-Encore User’s Guide
2 Press Enter again to display the Extract - Perform Name List pop-up, which contains
a list of all Perform Ranges in the program, as show in Figure 38.

Figure 38 • Extract - Perform Name List Pop-up

Use the Filter feature to narrow the list of selectable statements and simplify the
statement selection.

3 Type Filter on the command line and press Enter (or press PF5) to display the
Extract - Perform Range Filter pop-up (see Figure 39 on page 65).

Note:
You can type EXPORT on the command line to write selected Perform Range name
data from the Extract - Perform Name List pop-up to a specified, or default, dataset
name. See the ASG-Encore Reference Guide for a detailed description of the
EXPORT command and associated operands.
64

4 Perform Range Extract
4 Type GET-NUM-OF-DAYS in the PERFORM Name field, as show in Figure 39, to
filter the list of selectable perform ranges to include only this Perform Range. For
this example, use the default values for the Use Context field.

Figure 39 • Extract - Perform Range Filter Pop-up
65

 ASG-Encore User’s Guide
5 Press Enter to redisplay the Extract - Perform Name List pop-up, as show in
Figure 40. The only selection is GET-NUM-OF-DAYS.

Type S to the left of GET-NUM-OF-DAYS and press Enter. Press Enter again to
return to the Encore Primary screen, which displays with a message indicating that
the criteria for the extract were successfully selected.

Figure 40 • Extract - Perform Name List Pop-up (filtered)

See the online help for more detailed information about Extract features.
66

4 Perform Range Extract
Viewing the Logic Segment
After extracting the Logic Segment, review the output to verify that you have selected the
correct code.

To view the Logic Segment created by the extract

1 Select View Logic Segment and press Enter to display the View - Select Logic
Segments pop-up, as show in Figure 41.

The View - Select Logic Segment pop-up lists all Logic Segments created for the
program. The last active Logic Segment is highlighted and selected for viewing. For
this example, view the PERFORM-RANGE-0001 Logic Segment.

Figure 41 • View - Select Logic Segments Pop-up

Note:
To select another segment on the View - Select Logic Segments pop-up, (if
applicable), blank out the default S and select the Logic Segment you want to view
and press Enter.

67

 ASG-Encore User’s Guide
2 Press Enter to display the Source View screen, as show in Figure 42, which contains
the Logic Segment. The Logic Segment contains all of the code in the selected
Perform Range and all of the data items that are referenced by that code.

Figure 42 • Source View Screen - View Logic Segment
68

4 Perform Range Extract
Saving the Logic Segment
After viewing the Logic Segment, save it in the AKR for future processing and access.

To save a Logic Segment in the AKR

1 Select File Save Segment and press Enter to display the File - Save Logic Segments
pop-up, as show in Figure 43.

Figure 43 • File - Save Logic Segments Pop-Up

2 Type S to the left of the Logic Segment to be saved (PERFORM-RANGE-0001 in
this example) and press Enter to display the File - Save Segment pop-up (see
Figure 44 on page 70).

Note:
To generate the Logic Segment using a batch job, type B and press Enter to select
the desired Logic Segment. See the online help for more information about batch
generation.
69

 ASG-Encore User’s Guide
3 Perform these actions on the File-Save Segment pop-up (see Figure 44):

a Type the name to save the segment as in the Name field.

b Optionally enter a short description in the Description field.

c Optionally enter a long description of the Long Description field.

Figure 44 • File - Save Segment Pop-Up

4 Press Enter to return to the File-Save Logic Segments pop-up.

5 Press PF3 once to return to the Source View Screen and once again to return to the
Encore Primary screen.
70

4 Perform Range Extract
Creating the CALLable Module
After the Logic Segment has been extracted, viewed, and saved, you need to create the
CALLable submodule.

To create a CALLable submodule from the Logic Segment

1 Select Generate COBOL module and press Enter to display the Generate - Select
Logic Segment pop-up, as show in Figure 45.

Figure 45 • Generate - Select Logic Segment Pop-up

Note:
CALLable modules can also be generated using a batch job. See the online help for
more information about batch generation.

The Generate - Select Logic Segment pop-up lists all of the Logic Segments that
you have extracted during your current session, including any other Logic
Segments that have been saved in the AKR. The last referenced Logic Segment is
highlighted and preselected. Since the Logic Segment that you have extracted was
saved as GET-NUM-OF-DAYS, this is the name that is highlighted.
71

 ASG-Encore User’s Guide
2 Press Enter to display the Generate - COBOL Module pop-up, as show in Figure 46.

Figure 46 • Generate - COBOL Module Pop-up

3 A default name is assigned in the Program ID field, but can be changed as required.
In this case, change the name to CALCDAYS and press Enter to display the
Generate - Specify Perform Range ENTRY Names pop-up.

Note:
To set format and content options for the COBOL module being generated, select
Options Generate. See the online help for more information about Generate
options.

4 Press Enter to display the Generate - Multi-module PERFORM Ranges pop-up (see
Figure 47 on page 73).
72

4 Perform Range Extract
5 To select the Perform Range to be generated from the Generate - Multi-module
PERFORM Ranges pop-up (see Figure 47), type S in the Program ID area for the
GET-NUM-0F-DAYS Perform Range and press Enter to display the Edit Screen
(see Figure 48).

Figure 47 • Generate - Multi-Module PERFORM Ranges Pop-up

6 When the Edit screen displays, type CREATE on the command line and type C 9999
on the first line of code. Press Enter to save the module in your source library and
display the Edit/View - Create pop-up (see Figure 49 on page 74).

Figure 48 • Edit Screen Display of CALCDAYS
73

 ASG-Encore User’s Guide
7 Type the name you want to save the program under in your source library, as shown
in Figure 49, verify or clear any data in the Data Set Name and Volume Serial fields,
and press Enter to create the member and return to the Edit screen. Press PF3 until
you return to the Encore Primary screen.

Figure 49 • Edit/View - Create Pop-up

Note:
CREATE may only be issued against an empty member. If CALCDAYS already
exists in your library, you would need to use the REPLACE command. See the
online help and the ASG-Encore Reference Guide for more information about these
commands.
74

4 Perform Range Extract
Creating the Complement Module
After you have created the CALLable submodule, you can create the Complement
Module. The Complement Module is the original program with the extracted Logic
Segment removed. PERFORMs to the extracted Perform Range are replaced with
Encore-generated CALLs.

To create the Complement Module

1 Select Extract Complement and press Enter to display the Extract - Name Logic
Segment pop-up, as show in Figure 50.

Figure 50 • Extract - Name Logic Segment Pop-up

2 Accept the Encore-generated Logic Segment name (COMPLEMENT-0002 in this
example) and press Enter to display the Extract - Complement pop-up (see Figure 51
on page 76).
75

 ASG-Encore User’s Guide
3 To specify the Logic Segment from which to generate a Complement segment, select
GET-NUM-OF-DAYS and press Enter, as show in Figure 51.

Figure 51 • Extract - Complement Pop-up

4 Press Enter to return to the Encore Primary screen.

5 Select Generate COBOL module and press Enter to display the Generate - Select
Logic Segment pop-up, as show in Figure 52. Select the Logic Segment that is used
to create a Complement Module (COMPLEMENT-0002 in this example) and press
Enter to display the Generate - COBOL Module pop-up (see Figure 53 on page 77).

Figure 52 • Generate - Select Logic Segment Pop-up
76

4 Perform Range Extract
6 Accept the default name (VIARDEMV in this example, as shown in Figure 53), and
press Enter to display the Generate - Specify Perform Range CALL Names pop-up
(see Figure 54).

Figure 53 • Generate - COBOL Module Pop-up

7 Type CALCDAYS (if not automatically displayed, see Figure 54) as the ENTRY
Name for the GET-NUM-OF-DAYS Perform Range and press Enter to accept the
name.

Figure 54 • Generate - Specify Perform Range CALL Names Pop-up
77

 ASG-Encore User’s Guide
8 Press Enter to display the Edit screen with the generated module. Type CREATE on
the Command Line and then type C 9999 on the first line of code, as show in
Figure 55. Press Enter to display the Edit/View - Create pop-up (see Figure 56 on
page 79).

Figure 55 • Edit Screen - Complement Module
78

4 Perform Range Extract
9 When the Edit/View - Create screen displays, type the name you want to save the
program under (VIARDEMV in this example, as show in Figure 56), verify or clear
any data in the Data Set Name and Volume Serial fields, and press Enter.

Figure 56 • Edit /View - Create Screen - Complement Module

Note:
CREATE may be issued only against an empty member. If VIARDEMV already
exists in your library, use the REPLACE command. See the online help and the
ASG-Encore Reference Guide for more information about these commands.
79

 ASG-Encore User’s Guide
Encore has now created program VIARDEMV, which contains all of the logic of
the original program, except for the extracted Logic Segment.

If you examine the Complement Module, part of which is shown in Figure 57,
notice that the statement PERFORM GET-NUM-OF-DAYS has been replaced with
a CALL to CALCDAYS.

Figure 57 • VIARDEMV Complement Module

10 Press PF3 until you are returned to the Encore Primary screen.

11 Select File Close and press Enter to display the Close Program pop-up.

12 Select Close, discard segments. All unsaved logic segments are discarded when you
exit Encore by selecting the Exit option. For this example, you do not need to save
any generated data.

Note:
The Exit pop-up displays if you attempt to exit Encore using PF3. From this
pop-up, options are available to save logic segments, discard logic segments, or
cancel the exit and return to Encore.
80

4 Perform Range Extract
Listing of CALCDAYS
Figure 58 shows the first section of the Encore-generated module CALCDAYS. Samples
of the CALL Encore generated from the module VIARDEMO to CALCDAYS, listing
the data elements it is passing as parameters, are contained in this section.

Figure 58 • Member Containing Sample CALCDAYS Generated CALL

Figure 59 shows the sample CALL containing input and output code.

Figure 59 • Sample CALL Showing Inputs and Outputs
81

 ASG-Encore User’s Guide
When Encore generates a CALLable module, it creates notes that you need to examine to
verify that the module performs the way you expect it to, as show in Figure 60.

Figure 60 • Encore Workbench Notes

Figure 61 shows that Encore generated all of the necessary divisions when it created the
CALLable submodule. In the DATA DIVISION, Encore has included all data items
referenced by the Perform Range GET-NUM-OF-DAYS.

Figure 61 • Divisions Generated
82

4 Perform Range Extract
Figure 62 shows that any data elements contained in the Working-Storage section of the
original program that had Value clauses that were placed in the LINKAGE SECTION of
the CALLable module had the value clauses removed and shown as comments. COBOL
does not allow Value clauses in the LINKAGE SECTION.

Figure 62 • Value Clauses Removed and Shown as Comments
83

 ASG-Encore User’s Guide
Figure 63 shows that any statements generated by Encore are preceded by a comment. In
the case of the module CALCDAYS, Encore indicated that it inserted a GOBACK to
terminate the program normally when its intended function is completed. You need to
verify that this is what you want. If not, you need to change it to continue processing.

Figure 63 • GOBACK Comment
84

4 Perform Range Extract
Extracting Multiple Perform Ranges
By default, when you create a Logic Segment containing multiple Perform Ranges, the
CALLable module has multiple entry points. You can assign unique names to the entry
points. These entry point names are included in the CALLable module and the CALLing
module has CALLs generated for each Perform Range using the entry point names that
you assigned.

As an additional option, you can generate more than one module from a multiple Perform
Range extract. What this means is that rather than generating one module with an entry
point for each Perform Range extracted, you have the ability to create a separate module
for one or more of the Perform Ranges selected.

Creating the CALLed Module with Multiple Entry Points
Assume that you created a Logic Segment containing three Perform Ranges that are used
to create a CALLable module and the complement or CALLing program. The CALLable
module contains 3 entry points that are named PROGENT1, PROGENT2, and
PROGENT3.

To create the Logic Segment

1 Start an Encore session and, if necessary, open program VIARDEMO.

2 Select Extract Perform range and press Enter to display the Extract - Name Logic
Segment pop-up (see Figure 64 on page 86).
85

 ASG-Encore User’s Guide
3 Accept the default name shown in Figure 64 and press Enter to display the
Extract - Perform Name List pop-up (see Figure 65).

Figure 64 • Extract - Name Logic Segment

4 Select the first three Perform Ranges and press Enter twice to return to the Encore
Primary screen.

Figure 65 • Extract - Perform Name List Pop-up
86

4 Perform Range Extract
5 Select Generate COBOL module and press Enter to display the Generate - Select
Logic Segment pop-up, as show in Figure 66. Press Enter to select the Logic
Segment you just created and to display the Generate - COBOL Module Pop-up (see
Figure 67 on page 88).

Figure 66 • Generate - Select Logic Segment Pop-up
87

 ASG-Encore User’s Guide
6 Type the first Program Entry name (PROGENT1 in this example, as shown in
Figure 67) in the Program ID field and press Enter to display the Generate - Specify
Perform Range ENTRY Names pop-up (see Figure 68 on page 89).

Note:
For multiple entry points, there is no specific order to the use of entry point names.
Any entry point name can be used for the Program ID.

Figure 67 • Generate - COBOL Module Pop-up

Figure 68 on page 89 shows the Generate - Specify Perform Range ENTRY Names
pop-up, which is used to provide the ENTRY statement names for the CALLable
module (PROGENT1, the name you specified on the Generate - COBOL Module
pop-up. Encore assigns the Program ID name to one of the extracted Perform
Ranges.

In this case, ACCT-MAINTENANCE THRU ACCT-MAINTENANCE-EXIT was
assigned as the program name. You need to add the other two ENTRY names.
88

4 Perform Range Extract
7 Type PROGENT2 as the ENTRY name for CLOSE-PGM.

8 Type PROGENT3 as the ENTRY name for CLOSE-FILES.

9 Press Enter twice to display the Generate - Multi-module PERFORM Ranges pop-up
(see Figure 69 on page 90).

Note:
The name of the Selected Perform Range displays to the right of the entry point
name column. Any Perform Ranges performed by the selected Perform Range are
indented directly beneath. The list of Perform Range names can be condensed by
using the Collapse line command. To remove the subordinate Perform Ranges from
the list, enter '-' in the line command field next to the desired Perform Range. To
expand the list to include the subordinate Perform Ranges, enter a plus sign (+) in
the line command field next to the collapsed entry.

The Move and Into actions can only be used to reverse a split that creates separate
modules from entries for multiple Perform Range extracts. You cannot reverse a
nested Perform Range split.

Figure 68 • Generate - Specify Perform Range ENTRY Names Pop-up
89

 ASG-Encore User’s Guide
10 Press Enter twice when you have finished typing the ENTRY statement names to
display the Generate - Multi-module PERFORM Ranges pop-up, as show in
Figure 69.

Figure 69 • Generate - Multi-module PERFORM Ranges Pop-up

This pop-up is used to select the CALLable module to be generated. The contents of
this pop-up depend on how you complete the Generate - Specify Perform Range
ENTRY Names pop-up (see Figure 68 on page 89). In this example, three Perform
Ranges were extracted to generate one module with three ENTRY names. For that
reason, only one program name is displayed in this pop-up.

11 Type S in the selection field next to the Program ID PROGENT1 and press Enter to
display the generated module in the Edit screen (see Figure 70 on page 91).
90

4 Perform Range Extract
Figure 70 shows the multiple ENTRY statements generated by Encore.

Figure 70 • CALLable Module With Multiple ENTRY Statements

12 Press PF3 until you return to the Encore Primary screen.
91

 ASG-Encore User’s Guide
Creating Separate Modules from a Multiple Perform Range Extract
For this example, assume that these Perform Ranges are extracted from VIARDEMO:

• ACCT-MAINTENANCE THRU ACCT-MAINTENANCE-EXIT

• CLOSE-PGM

• CLOSE FILES

Perform Range ACCT-MAINTENANCE THRU ACCT-MAINTENANCE-EXIT
performs the Perform Ranges shown in Figure 71.

Figure 71 • Perform Range ACCT-MAINTENANCE
92

4 Perform Range Extract
Perform Range CLOSE-PGM performs the Perform Range shown in Figure 72. Perform
Range CLOSE-FILES does not perform any other Perform Ranges, but is performed by
CLOSE-PGM.

Figure 72 • Structure of Perform Range CLOSE-PGM

The default result of an extract of multiple Perform Ranges is a CALLable module with
an ENTRY name for each Perform Range extracted. You have determined that
UPDATE-ACCT THRU UPDATE-ACCT-EXIT, performed by
ACCT-MAINTENANCE THRU ACCT-MAINTENANCE-EXIT, should be a separate
module. The result you want would be these two modules:

• One module containing three ENTRY names, PROGENT1 for
ACCT-MAINTENANCE THRU ACCT-MAINTENANCE-EXIT, PROGENT2 for
CLOSE-PGM, and PROGENT3 for CLOSE-FILES.

• One module containing the Perform Range UPDATE-ACCT THRU
UPDATE-ACCT-EXIT along with any other Perform Ranges executed by it.

This example shows the steps involved in creating multiple modules from a multiple
Perform Range extract:

1 Start an Encore session and open VIARDEMO if necessary.

2 Select Extract Perform range and press Enter to display the Extract - Name Logic
Segment pop-up.

3 Press Enter to accept the default Logic Segment name on the Extract - Name Logic
Segment pop-up.

4 Select the first 3 Perform Ranges from the Extract - Perform Name List pop-up and
press Enter twice.
93

 ASG-Encore User’s Guide
5 Select Generate COBOL module.

6 Press Enter to select the Logic Segment just extracted.

7 On the Generate - COBOL Module pop-up, type PROGENT1 in the Program ID field
and press Enter to display the Generate - Specify Perform Range ENTRY Names
pop-up, as show in Figure 73.

Figure 73 • Generate - Specify Perform Range ENTRY Names Pop-up

Figure 73 shows that PROGENT1, the ENTRY name for ACCT-MAINTENANCE
THRU ACCT-MAINTENANCE EXIT, is the default Program ID. PROGENT2 is
assigned to Perform Range CLOSE-PGM, and PROGENT3 is assigned to Perform
Range CLOSE-FILES. Also, Perform Range UPDATE-ACCT THRU
UPDATE-ACCT-EXIT, which is performed by ACCT-MAINTENANCE THRU
ACCT-MAINTENANCE-EXIT, is generated as a separate module.

8 Type PROGENT2 as the ENTRY name for CLOSE-PGM.

9 Type PROGENT3 as the ENTRY name for CLOSE-FILES.

10 To generate UPDATE-ACCT THRU UPDATE-ACCT-EXIT as a separate module,
type S in the line command column next to PERFORM UPDATE-ACCT THRU
UPDATE-ACCT-EXIT and press Enter to display the updated Generate - Specify
Perform Range ENTRY Names pop-up (see Figure 74 on page 95).
94

4 Perform Range Extract
Figure 74 shows that the Perform Range UPDATE-ACCT THRU
UPDATE-ACCT-EXIT has been split out as a separate program by Encore. The
Perform statement within ACCT-MAINTENANCE THRU
ACCT-MAINTENANCE-EXIT has been converted to a CALL.

Figure 74 • Generate - Specify Perform Range ENTRY Names Pop-up

11 Type UPDTACCT as a Program ID for the Perform Range UPDATE-ACCT THRU
UPDATE-ACCT-EXIT, as shown in Figure 75, and press Enter twice to display the
Generate - Multi-module PERFORM Ranges pop-up (see Figure 76 on page 96).

Figure 75 • Generate - Specify Perform Range ENTRY Names Pop-up - Assign Program ID
95

 ASG-Encore User’s Guide
12 To generate a module and display it in Edit, type S on the selection field next to the
desired Program ID name (PROGENT1 in this example, as show in Figure 76) and
press Enter to generate the module and display it on the Edit screen.

This pop-up is used to select each module to be generated. Only one module can be
selected at a time.

Figure 76 • Generate - Multi-module PERFORM Ranges - Select Module to Generate

13 Save the generated module by typing CREATE on the command line and then C
9999 on the first line of code. Press Enter to save the module in your source library
and display the Edit/View - Create pop-up.

14 On the Edit/View - Create pop-up, type the name you want to save the program under
in your source library, verify or clear any data in the Data Set Name and Volume
Serial fields, and press Enter to create the member and return to the Edit screen.

15 Press PF3 to return to the Generate - Multi-module PERFORM Ranges pop-up. You
can repeat this procedure to generate the remaining modules. When finished, press
PF3 until you return to the Encore Primary screen.
96

4 Perform Range Extract
Reviewing the Generated Modules
The results of this exercise have produced two modules; PROGENT1 and UPDTACCT.

Figure 77 shows that PROGENT1 is the Program ID and is made up of the Perform
Ranges ACCT-MAINTENANCE THRU ACCT-MAINTENANCE-EXIT,
CLOSE-PGM, and CLOSE-FILES.

Figure 77 • PROGENT1

Figure 78 shows that PROGENT2 is the ENTRY name for CLOSE-PGM Perform
Range.

Figure 78 • PROGENT2
97

 ASG-Encore User’s Guide
Figure 79 shows that PROGENT3 is the ENTRY name for CLOSE-FILES.

Figure 79 • PROGENT3

Figure 80 shows that the Perform for UPDATE-ACCT THRU UPDATE-ACCT-EXIT
has been changed to a CALL to program UPDTACCT.

Figure 80 • Call to UPDTACCT
98

4 Perform Range Extract
Detecting and Eliminating Multiple Perform Range Common Code
This section discusses the techniques you can use to eliminate replication of common
code within multiple Perform Range extracts.

Common code can occur within a multiple Perform Range extract when the Perform
Range selected to be converted to a CALLable module contains a performed subroutine
that is executed by additional Perform Ranges in the extract. Encore identifies this
condition and gives you the option of eliminating replication of common code.

For this discussion, assume that the two Perform Ranges in VIARDEMO,
ACCT-MAINTENANCE THRU ACCT-MAINTENANCE-EXIT and UPDATE-ACCT
THRU UPDATE-ACCT-EXIT are to be selected for extract. Additionally, Perform
Range UPDATE-ACCT THRU UPDATE-ACCT-EXIT is to be generated as a
CALLable module.

ACCT-MAINTENANCE THRU ACCT-MAINTENANCE-EXIT and UPDATE-ACCT
THRU UPDATE-ACCT-EXIT both perform subroutine INITIATE-ACTION. When
both Perform Ranges are generated as CALLable modules, the code in
INITIATE-ACTION is present in both modules. Encore detects this condition and allows
you to circumvent it.

To select the Perform Ranges
These steps select Perform Ranges ACCT-MAINTENANCE THRU
ACCT-MAINTENANCE-EXIT and UPDATE-ACCT THRU UPDATE-ACCT-EXIT:

1 Select Extract Perform range.

2 Accept the default Logic Segment name on the Extract - Name Logic Segment
pop-up by pressing Enter.

3 On the Extract - Perform Name List pop-up, select the Perform Ranges
ACCT-MAINTENANCE THRU ACCT-MAINTENANCE-EXIT and
UPDATE-ACCT THRU UPDATE-ACCT-EXIT (you may have to page down to
see the last Perform Range). Press Enter to confirm the selection and press Enter
again to return to the Encore Primary screen.
99

 ASG-Encore User’s Guide
To generate the COBOL module

The object of this extract is to generate two CALLable modules. Currently, module
VIARDEMV contains two ENTRY points; VIARDEMV as the Program ID, and another
ENTRY point that represents Perform Range UPDATE-ACCT THRU
UPDATE-ACCT-EXIT. These steps provide the option to convert a Perform Range to a
CALLable module.

1 Select Generate COBOL module.

2 Select the Logic segment just extracted or except the highlighted selection.

3 Press Enter to accept the default Program ID on the Generate - COBOL Module
pop-up. The Generate - Specify Perform Range ENTRY Names pop-up displays and
is used to provide the ENTRY statement names for the CALLable module, as shown
in Figure 81.

Figure 81 • Generate - Specify Perform Range ENTRY Names Pop-up

4 To convert UPDATE-ACCT THRU UPDATE-ACCT-EXIT to a CALLable
module, initiate the split option by typing S to the left of Perform Range
UPDATE-ACCT THRU UPDATE-ACCT-EXIT and press Enter.
100

4 Perform Range Extract
Figure 82 shows that the ENTRY field for UPDATE-ACCT THRU
UPDATE-ACCT-EXIT now becomes the Program ID field, indicating that the
Perform Range is generated as a CALLable module. Note that the words DUP (002)
appear to the right of the Perform statements PERFORM INITIATE-ACTION.
Encore has detected that the code in this Perform Range is duplicated in both
modules. The number within the parentheses indicate the number of times the
Perform Range is executed in this Logic Segment.

Figure 82 • Using the Split Option to Generate a Callable Module

To change executed Perform statement code to a CALLable module

1 Type S to the left of the Perform statement PERFORM INITIATE-ACTION and
press Enter.

Note:
You can eliminate duplicate code that can occur when converting Perform Ranges
to modules by using the Split option to convert the duplicated code into a
CALLable submodule. By doing this, the Perform statements in the two modules
are changed to CALLs.
101

 ASG-Encore User’s Guide
A Program ID field is now displayed next to Perform statement
INITIATE-ACTION. Note that the PERFORMs have been changed to CALLs, as
shown in Figure 83.

Figure 83 • Using the Split Option

2 Change the Program ID for UPDATE-ACCT THRU UPDATE-ACCT-EXIT and
enter a Program ID for INITIATE-ACTION.

3 Replace UPDATE0A with UPDTACCT in the PROGRAM field next to
UPDATE-ACCT THRU UPDATE-ACCT-EXIT.

4 Type INITACT in the PROGRAM field next to INITIATE-ACTION.
102

4 Perform Range Extract
5 Press Enter twice to display the Generate - Multi-module PERFORM Ranges
pop-up, as show in Figure 84.

This pop-up is used to select which COBOL module is generated. Only one module
can be selected at a time. Select a module and press Enter to generate the module
and display the source using your default editor. When you have processed the
generated module (saving it, for example), press PF3 to redisplay the
Generate - Multi-module PERFORM Ranges pop-up. You can select another
Program ID or you can press PF3 to return to the Encore Primary screen.

Figure 84 • Selecting a Module for Generating a COBOL Module
103

 ASG-Encore User’s Guide
Creating Complement Modules from Multiple Perform Range Extracts
When creating the Complement Module from a multiple Perform Range extract, Encore
replaces the PERFORM statements for each Perform Range with a CALL to the ENTRY
name that you assigned to each Perform Range. Once you have created the CALLable
submodule, you then need to create the CALLing program (complement).

To create a Complement Module from a Multiple Perform Range extract

1 Select Extract Complement to display the Extract - Name Logic Segment pop-up,
as show in Figure 85.

Figure 85 • Extract - Name Logic Segment Pop-up

2 Accept the default Logic Segment name and press Enter to display the
Extract - Complement pop-up (see Figure 86 on page 105).
104

4 Perform Range Extract
3 Select the multiple Perform Range Logic Segment previously generated, as show in
Figure 86. Press Enter, then PF3 twice to return to the Encore Primary screen.

Figure 86 • Extract - Complement Pop-up

4 From the Encore Primary screen, select Generate COBOL Module and press Enter
to display the Generate - Select Logic Segment pop-up (see Figure 87 on page 106).
105

 ASG-Encore User’s Guide
5 Select the Complement Logic Segment, as show in Figure 87, that was created in
step 3 on page 105 and press Enter to display the Generate - COBOL Module pop-up
(see Figure 88).

Figure 87 • Generate - Select Logic Segment Pop-up

6 Type the name of the CALLing program in the Program ID field and press Enter to
display the Generate - Specify Perform Range CALL Names pop-up (see Figure 89
on page 107).

Figure 88 • Generate - COBOL Module Pop-up
106

4 Perform Range Extract
7 Encore remembers the ENTRY statement names you assigned when extracting the
multiple Perform Ranges and lists them on the Generate - Specify Perform Range
CALL Names pop-up, as show in Figure 89. Verify that the names are correct and
press Enter to display the Edit screen (see Figure 90).

Figure 89 • Generate - Specify Perform Range CALL Names Pop-up

The Edit screen shows an example of one of the CALLs to the multiple program
ENTRYs generated by Encore at the appropriate place (line 241).

Figure 90 • Encore-Generated CALLs to Multiple Program ENTRYs

8 After you have reviewed the output, press PF3 until you return to the Encore Primary
screen.
107

 ASG-Encore User’s Guide
9 Optional. After entering the edit session, type CREATE on the command line and
then C 9999 on the first line of code. Press Enter to display the Edit/View - Create
pop-up and save the compliment module (if desired).

Understanding Perform Extracts and Common Code
When you extract a Perform Range Logic Segment, you need to be aware of common
code within the Perform Range. Common code occurs when a Perform subroutine is
performed by two or more subroutines in a program. An example of common code is
shown in Figure 91.

Note:
This section shows examples that are not contained in VIARDEMO. The programs and
associated figures used in this section are provided as specific examples of how to review
Perform extracts and common code.

• Box 003, AML-MORT-TYPE, performs Box 008, CALCULATE-RATE.

• Box 009, VERIFY-ACCT also performs CALCULATE-RATE.

Figure 91 • Structure View of Common Code
108

4 Perform Range Extract
If you were to extract paragraph VERIFY-ACCT and create a CALLable submodule, it
would contain paragraphs VERIFY-ACCT, APPLY-TRANS, and CALCULATE-RATE.
Normally, a Complement Module would not contain code present in the extracted Logic
Segment(s). However, in this case the Complement Module would also contain paragraph
CALCULATE-RATE because it is also performed outside of the extracted Logic
Segment, i.e, from AML-MORT-TYPE. This means that the logic in
CALCULATE-RATE would exist in both the CALLable submodule and the
Complement Module.

To prevent the replication of common code

1 Since paragraph CALCULATE-RATE is common to several Perform Ranges, you
would extract it first and generate a CALLable submodule.

2 After generating the submodule, generate the Complement Module.

Notice that the common code in paragraph CALCULATE-RATE (as shown in
Figure 91 on page 108) has been replaced by a CALL to module CALCRATE in
Figure 92, the CALLable submodule you just created.

Figure 92 • Structure View of Complement Module MOR0009C

Note:
The Complement Module (MOR0009C) created in step 2 must be Analyzed and
placed in the AKR before the extraction in step 3 on page 110 is done.
109

 ASG-Encore User’s Guide
3 Extract the Perform Range VERIFY-ACCT from the Complement Module
MOR0009C created in step 2 on page 109 and generate a CALLable submodule. The
generated submodule (after VERACCNT was analyzed) is shown Figure 93.

Figure 93 • Structure View of Submodule VERACCNT

Note that the common code in paragraph CALCULATE-RATE in the original
module has been replaced by a CALL to module CALCRATE, created in step 1 on
page 109.
110

4 Perform Range Extract
4 Generate another Complement Module from Complement Module MOR0009C,
created in step 2 on page 109, name it MOR00091, and analyze it. See "The Analyze
Facility" on page 36 for more information about using Encore to analyze a program.

Figure 94 • Structure View of Complement Module MOR00091

The CALLable submodule created in step 3 on page 110 (see Figure 93 on page
110) and Complement Module MOR00091 created in step step 4 above (see
Figure 94) both have CALLs to submodule CALCRATE, created by step 1 on
page 109, thereby eliminating the duplication of code in the Complement Module
and the submodule VERACCNT.
111

 ASG-Encore User’s Guide
Finding Common Code in CALLable Submodules and
Complements

Encore provides you with an easier way to isolate common code. Assume that you have
created a Perform Range Logic Segment with the default name GET-NUM-OF-DAYS
and the complement Logic Segment with the default name COMPLEMENT-0004.

To determine if common code exists

1 Select Extract Common Code to display the Extract - Name Logic Segment
pop-up, as show in Figure 95.

Figure 95 • Extract - Name Logic Segment Pop-up

2 Use the default Logic Segment name and press Enter to display the
Extract - Common Code pop-up (see Figure 96 on page 113).
112

4 Perform Range Extract
3 Select the Logic Segments to be checked for common code. In this example, Logic
Segments COMPLEMENT-0004 and GET-NUM-OF-DAYS are selected, as show
in Figure 96. Press Enter twice to return to the Encore Primary screen.

Figure 96 • Extract - Common Code Pop-up

4 Select View Logic Segment to display the View - Select Logic Segment pop-up,
as show in Figure 97.

Figure 97 • View - Select Logic Segments Pop-up
113

 ASG-Encore User’s Guide
5 Select the Logic Segment that was created from the Common Code extract and press
Enter to display the View - Common Code PERFORM Ranges pop-up, as show in
Figure 98.

Figure 98 • View - Common Code PERFORM Range Pop-up

If common code exists between a Perform Range Logic Segment and the
Complement this pop-up is displayed, showing all Perform Ranges in the program.
Perform Ranges containing code that would appear in both the CALLable
submodule and the CALLing program are highlighted. Indented Perform Range
names are subordinate to the preceding non-indented Perform Range names.

You can display the common code within the highlighted Perform Range(s) in a
Source View, Tree View, or Structure View from this pop-up by entering the
commands SV, TV, or STV, respectively, on the command line.

Once common code is identified, it can be eliminated by following the procedures
described in "Detecting and Eliminating Multiple Perform Range Common Code"
on page 99 .

Note:
If no common code exists, a No Statements message displays when you
attempt to view the Common Code Logic Segment.
114

4 Perform Range Extract
Replacing IO Statements with CALLs to an IO Module
Encore provides an automated solution to the COBOL constraint against file references
across program boundaries. It involves replacing IO statements contained in the Perform
Range with Encore-generated CALLs to an IO module. Encore can also generate the IO
Module.

Note:
The CALLs to IO Module(s) option from the Generate - COBOL Module pop-up is
available from any extract method except for Common Code.

To replace IO statements with CALLs to IO modules

1 Select Generate COBOL Module to display the Generate - Select Logic Segment
pop-up, as show in Figure 99.

Figure 99 • Generate - Select Logic Segment Pop-up

2 Type S next to the Logic Segment name you want to generate and press Enter to
display the Generate - COBOL Module pop-up (see Figure 100 on page 116).
115

 ASG-Encore User’s Guide
3 Type the Program ID and enable the CALLs to IO Module(s) option by typing a
forward slash (/) next to the option, as shown in Figure 100.

Figure 100 • Generate-COBOL Module Pop-up

.

4 Press Enter to display the Select FD Names pop-up, as shown in Figure 101.

Figure 101 • Select FD Names Pop-up
116

4 Perform Range Extract
5 Verify the Encore-generated prefix to the IO Parm block that is created in the
LINKAGE section, to select one or more FD names, and to verify the ENTRY names
that are used in the generated CALL to the selected files. You can use the
Encore-generated prefix and ENTRY name, or assign your own by typing over the
respective fields.

Note:
An asterisk (*) next to the FD name signifies that an IO module has been previously
generated for that file.

6 Press Enter to display the Generate - Specify Perform Range CALL Names pop-up,
as show in Figure 102.

Figure 102 • Generate - Specify Perform Range CALL Names Pop-up

The Complement Module includes CALLs to extracted PERFORM Range(s). If not
automatically displayed, you need to specify the ENTRY name of the program to be
CALLed.

7 In the ENTRY Name field for the Perform Range, enter a name for the program to
be CALLed, if needed.
117

 ASG-Encore User’s Guide
8 Press Enter to accept the name and press Enter again to generate the module.

When Encore generates the module, it substitutes CALLs to the IO module(s)
selected in the Select FD Names pop-up.

The CALLs to the selected IO module are shown in Figure 103.

Figure 103 • Encore-Generated CALLs to IO Module

9 Press PF3 until you return to the Encore Primary screen.

At some point, it becomes necessary to generate the IO module that is CALLed by
the CALLable submodule generated in the previous steps. There is no required
sequence for creating the IO module or the CALLing module. The only requirement
is that the IO module Program-ID be the same as the CALL Name assigned on the
Select FD Names pop-up.
118

4 Perform Range Extract
Generating the IO Module
The IO module supports physical sequential, VSAM sequential, VSAM relative, and
VSAM indexed files. All variations of IO statements for these files are supported,
including declaratives. RD, SD, and CD files are not supported. It is not necessary to
perform an extract prior to generating an IO module, however, an analyzed program must
be opened.

To generate an IO module

1 Select Generate File IO module to display the Generate - FD Name List pop-up, as
show in Figure 104.

This pop-up is used to select the file to be used in the IO module. All FD names
defined in the program are listed in the column labeled FD Name. An asterisk to the
left of the FD name indicates that an IO module has been previously generated for
this FD. Information about each file is listed on the pop-up, such as access method,
organization, number of READs to the file, and number of WRITEs to the file.

Figure 104 • Generate FD Name List Pop-up

2 Type S next to the FD name to be selected. Only one FD can be selected per IO
module. Press Enter to display the Generate - IO Module pop-up (see Figure 105 on
page 120).
119

 ASG-Encore User’s Guide
3 Press Enter to display the Generate - IO Module pop-up, as show in Figure 105, and
generate the IO module.

4 Verify that the Program ID matches the ENTRY name assigned to the CALL to this
module.

Figure 105 • Generate - IO Module Pop-up

Once the IO module has been created, as show in Figure 106, you have the option
of saving it using the CREATE command (for an example, see step 9 on page 108).

5 Press PF3 until you return to the Encore Primary screen.

Figure 106 • Generated IO Module Screen
120

4 Perform Range Extract
Perform Range Extract Compilation Issues
When Encore generates CALLable modules from a Perform Range extract, certain
conditions may occur that cause compile errors or cause the program not to run at all. As
shown in this section, Encore inserts comment messages in the generated modules when
these conditions occur.

Condition 1
Encore-generated CALLs from the Complement Module to the extracted module.

Condition 2
Encore generated a CALL that replaced a PERFORM VARYING construct.

Cause Action

The Complement Module produced for
a Perform Range objective contains
Encore-generated CALLs to the
extracted module.

None.

Cause Action

A PERFORM with the VARYING or
TIMES option cannot be replaced by a
CALL statement. In this case, Encore
generates a SECTION to contain the
generated CALL, and PERFORMs that
SECTION using the original VARYING
or TIMES option.

If the replaced PERFORM used the
VARYING option, verify or alter
SECTION name or the extracted module.
121

 ASG-Encore User’s Guide
Example - Condition 2

If the generated submodule was originally PERFORMed by the Complement Module
using the VARYING or TIMES option, Encore cannot replace the PERFORM with a
CALL. Instead, Encore creates a SECTION to contain the generated CALL and
PERFORMs that SECTION using the original VARYING or TIMES option. Figure 107
shows the PERFORM VARYING option to an extracted subroutine in the original
program.

Figure 107 • PERFORM VARYING Example 1

Figure 108 shows the message created by Encore in the Complement Module.

Figure 108 • PERFORM VARYING Example 2
122

4 Perform Range Extract
Figure 109 shows the PERFORM - VARYING to the SECTION generated by Encore.

Figure 109 • PERFORM VARYING Example 3
123

 ASG-Encore User’s Guide
Condition 3
An unnamed 01 level data item, moved from WORKING-STORAGE to LINKAGE,
must be assigned a valid COBOL data item name.

Cause Action

• An unnamed 01 level was moved
to the LINKAGE SECTION.
When Encore generated the
LINKAGE SECTION for a
subprogram, it did not rename data
items that were moved from the
WORKING-STORAGE
SECTION.

• COBOL syntax allows a
nonreferenced 01 level data item to
go unnamed in
WORKING-STORAGE, but not in
LINKAGE.

• Encore assigns the name
'_FILLER' to the data item and
issues this message. The
subprogram cannot successfully
compile until the data item is given
a valid name.

• A similar situation occurs when
two 01 levels are defined with the
same name and are not referenced
at the 01 level. In this case, the
compiler detects a duplicate name.

Assign a valid COBOL data item name to
each LINKAGE SECTION data item with
the name '_FILLER'.
124

4 Perform Range Extract
Condition 4
An unnamed 01 level data item is contained in the USING list of an Encore-generated
CALL from the Complement Module to the extracted module.

Condition 5
Encore-generated statements that cause normal exits from the program.

Cause Action

• An unnamed 01 level was moved
to the LINKAGE SECTION.
When Encore generated the
LINKAGE SECTION for a
subprogram, it did not rename data
items that were moved from the
WORKING-STORAGE
SECTION.

• COBOL syntax allows a
nonreferenced 01 level data item to
go unnamed in
WORKING-STORAGE, but not in
LINKAGE.

• Encore assigns the name
'_FILLER' to the data item and
issues this message. The
subprogram cannot successfully
compile until the data item is given
a valid name.

• A similar situation occurs when
two 01 levels are defined with the
same name and are not referenced
at the 01 level. In this case, the
compiler detects a duplicate name.

Assign a valid COBOL data item name to
each generated CALL USING entry with
the name '_FILLER'.

Cause Action

Encore generates program exit
statements (STOP RUN, GOBACK,
EXEC CICS RETURN) to ensure that
the program exits properly. A normal
program exit is generated when the
intended function of the program is
complete.

Review the conditions surrounding each
generated exit statement to determine if
the default exit statement should be
augmented or replaced.
125

 ASG-Encore User’s Guide
Condition 6
Encore has determined that a COPY statement cannot be used. Portions of the copybook
are reproduced inline.

Condition 7
A generated subprogram references a file, but not all of the references to that file are
contained within the subprogram. COBOL does not support file references across
program boundaries.

Cause Action

• Under certain conditions, the
original COPY statement cannot
be used in a generated module.

• When data elements in the COPY
statement contain definitions split
between WORKING STORAGE
and LINKAGE sections.

• When COPY statements contain
dead code.

• When the contents of a COPY
statement used in the LINKAGE
SECTION contain the VALUE
clause.

• In addition to this message, Encore
generates comments indicating
why the COPY statement could
not be used as originally coded.

Determine why the COPY member was
not usable. No action is required, however,
the COPY member contents may be
modified in order to use it in this context.
Example:
A copybook contains both FD and data
item definitions. One or more of the data
item definitions must be used in the
LINKAGE SECTION.

Cause Action

If the Perform Range code contains some
references to a file, but does not contain
all references to it, this message is
generated.

Consider regenerating the module with the
CALLs to IO Module option on the
Generate - COBOL Module pop-up (see
Figure 88 on page 106).
Example:
One Perform Range opens FILE-X, a
second Perform Range reads FILE-X, and
a third Perform Range closes FILE-X. If
the Logic Segment fails to select all three
Perform Ranges, this message is
generated.
126

4 Perform Range Extract
Condition 8
Encore has generated ENTRY statements to provide alternate entries into a subprogram.

Condition 9
Encore has generated the following variables to pass INDEX values between
subprograms. Verify that appropriate names have been generated.

Cause Action

When multiple Perform Ranges are
selected for the Perform Range objective,
each Perform Range is assumed to be a
separate ENTRY of the generated
module. This message is produced to
document the generation of multiple
ENTRY statements. Each ENTRY was
assigned a name from the
Generate - Specify Perform Range Entry
Names pop-up (see Figure 89 on page
107).

None, information only message.

Cause Action

The Perform Range requires table index
variables as input parameters. Index
Names are not true COBOL variables,
and their values cannot be communicated
through linkage. To accomplish
execution equivalency, Encore adds
additional code to both the Complement
Module and the submodule.

Review the generated SET and 77 level
statements.
127

 ASG-Encore User’s Guide
Complement Module Program Listing

This section shows a Complement Module that was generated from a program that
contained an indexed table. These examples include the Complement Module and the
submodule that remain after the perform extract.

Example 1 - Complement
Figure 110 shows the Encore generated note that describes the variables that have been
generated for the Complement Module.

Figure 110 • Compliment Module Note

Figure 111 shows that Encore created a 77 level variable with a USAGE IS INDEXED
clause. This figure also shows that Encore has set the generated index variable to the local
table index value.

Figure 111 • Complement Module 77 Level Variable & Generated Index Variable
128

4 Perform Range Extract
Figure 112 shows that Encore CALLs the submodule and passes the table along with the
index variable.

Figure 112 • Complement Module Submodule CALL

Figure 113 shows that on the return from the CALL, Encore generated a SET statement to
set the value of the table index to the value of the index variable that was passed to the
submodule.

Figure 113 • Encore Generated SET Statement
129

 ASG-Encore User’s Guide
Example 2 - Submodule
Figure 114 shows the submodule CALLed by the previously listed Complement Module.

Figure 114 • Called Submodule
130

4 Perform Range Extract
Figure 115 shows how the variable passed from the Complement Module that contains
the initial value of the table index is defined in the LINKAGE SECTION.

Figure 115 • Passed LINKAGE SECTION

Figure 116 and Figure 117 show how the table index is set to the value passed by the
Complement Module

Figure 116 • Table Index Value - 1

Figure 117 • Table Index Value - 2
131

 ASG-Encore User’s Guide
Figure 118 shows how the index variable is set to the value of the table index, calculated
in paragraph SEARCH-TABLE.

Figure 118 • Index Variable - SEARCH-TABLE
132

5
 5Computation Variable Extract
This chapter contains a practical demonstration of how to perform a Computation
Variable extract to compute the value of a variable, and contains these sections:

Introduction
This chapter contains a scenario that demonstrates the technique of using a Computation
Variable extract to determine how the value in a variable gets computed.

The Encore demonstration program VIARDEMO is used for the examples in this chapter.
For a partial listing of VIARDEMO, see "The Demonstration Program" on page 49 .

Section Page

Introduction 133

The Business Scenario 134

Starting an Encore Session 134

Extracting the Computation Variable 135

Viewing the Logic Segment 140

Saving the Logic Segment 143

Creating Pseudo Source Modules to Change Logic Segment Results 145

Controlling Extract Boundaries 152

Computation Variable Extract Compilation Issues 155
133

 ASG-Encore User’s Guide
The Business Scenario
You are a senior programmer at the MIS department at Universal Bank. Accounting asks
you how the Interest Calculation Program (ICP) calculates interest for the different types
of customer accounts. The ICP program has not been looked at in years and you don't
remember the algorithm for calculating the interest.

By doing some preliminary analysis, you determine that the interest calculation variable
is WK-INTEREST. Using Encore, you can identify and select the variable used to
compute the interest and isolate all of the statements that contribute to or influence the
value in that variable. The extract method used to do this is the Computation Variable
extract.

Starting an Encore Session
To start the Encore session, you need to access the ESW Primary screen and open the
Encore application.

Note:
Logon procedures and AKR information are unique to your programming environment.
If necessary, contact your systems administrator or your Encore coordinator for the
correct dataset names.

To open Encore

1 Logon to the ESW Primary screen.

2 Select Re-engineer Program and press Enter to display the Encore Primary screen.

Or

Type EN on the command line and press Enter to display the Encore Primary
screen.

3 Select File Open and press Enter to display the File - Open Program pop-up.

4 Type the AKR dataset name in the Data Set Name field and VIARDEMO in the
Program Name field and press Enter.

See "Starting an Encore Session" on page 59 for more information.
134

5 Computation Variable Extract
Extracting the Computation Variable

To extract a Computation Variable and isolate all associated statements

1 Select Extract Variable and press Enter to display the Extract - Name Logic
Segment pop-up, as shown in Figure 119.

The Name field contains an Encore generated default name, which can be replaced
if desired. For this example, use the default name
COMPUTATION-VARIABLE-0001.

Figure 119 • Extract - Name Logic Segment Pop-up
135

 ASG-Encore User’s Guide
2 Press Enter to display the Extract - Data Name List pop-up, as shown in Figure 120.

This pop-up displays the name of all variables in the program. The list can be
scrolled up and down. By default, the data names are displayed in alphabetic
sequence with the name of the group level in which the variable is defined. To sort
the variables in a different order, press PF17.

You can also display the variable name profile instead of the Qualification by
typing 2 in the Data Name Information field.

Figure 120 • Extract - Data Name List Pop-up

Use the Filter option to simplify the variable selection process.

3 Type Filter on the command line of the Extract - Data Name List pop-up and
press Enter (or press PF5) to display the Extract - Computation Variable Filter
pop-up (see Figure 121 on page 137).
136

5 Computation Variable Extract
4 To shorten the list of selectable variables to those that begin with W, type W* on the
Data Name line, as shown in Figure 121, and press Enter to redisplay the
Extract - Data Name List pop-up.

Figure 121 • Extract - Computation Variable Filter Pop-up

Note:
Use the Limit to within an existing Segment option on the Extract - Computation
Variable Filter pop-up to limit or bound the current extract definition. See
"Extracting Code from an Existing Logic Segment" on page 153 for an example of
how, and when, this option is used.
137

 ASG-Encore User’s Guide
.After filtering, the Extract - Data Name List pop-up displays all data names
beginning with W, as shown in Figure 122.

Figure 122 • Extract - Data Name List Pop-up After Filtering

5 Type S on the selection line showing WK-INTEREST and press Enter to display the
Extract - Source Ordered View pop-up (see Figure 123 on page 139).

Note:
If the fully qualified data name is typed in the Data Name field on the
Extract - Computation Variable Filter screen, Figure 122 does not display. The
Encore Primary screen redisplays with the information message ASG4289I
VARIABLE(S) "WK-INTEREST" SELECTED. SELECT VIEW OR
GENERATE.
138

5 Computation Variable Extract
6 Type S on lines 303 and 307, as shown in Figure 123, and press Enter. Press Enter
again to redisplay the Extract - Data Name List pop-up (see Figure 124).

This pop-up shows the statements associated with WK-INTEREST.

Figure 123 • Extract - Source Ordered View Pop-up

The Extract - Data Name List pop-up redisplays with the WK-INTEREST data name
highlighted.

Figure 124 • Extract Data Name List Pop-up - Variable Name Selected

7 Press Enter. The Encore Primary screen displays the message ASG4044I
COMPUTATION VARIABLE STATEMENTS SUCCESSFULLY SELECTED,
indicating that the variable was selected.
139

 ASG-Encore User’s Guide
Viewing the Logic Segment
Viewing the selected Logic Segment allows you to determine how the value of
WK-INTEREST is derived.

To view the Logic Segment

1 Select View Logic Segment and press Enter to display the View - Select Logic
Segment pop-up, as shown in Figure 125.

This pop-up displays all of the Logic Segments extracted during the current session,
as well as the logic segments that are saved in the AKR. The most recently
extracted Logic Segment is highlighted and preselected for convenience.

Figure 125 • View - Select Logic Segment Pop-up
140

5 Computation Variable Extract
2 Type 'FIND COMPUTE WK-INTEREST =' on the command line and press Enter
to view the results. Figure 126 shows the Logic Segment extracted for variable
WK-INTEREST. From this segment we can see the algorithm for computing the
account interest, including the component that calculates the interest rate
(INTEREST-RATE / 100).

Figure 126 • Search View - Logic Segment for WK-INTEREST Extraction

To use Logic Segments to discover interest rate values

1 Select Search Data to display the Search - Data Name pop-up.

2 Type INTEREST-RATE in the Data Name field.

3 Select All from the Direction option.

4 Select Mods from the Reference option and press Enter to find the statements that
modify the interest rate. Leave the default values for all other fields.
141

 ASG-Encore User’s Guide
The results of the search are displayed in the Source View, as shown in Figure 127.
All statements that modify the interest rate are highlighted. You now know that the
interest rate is controlled by the setting of ACCT-TYPE of ACCT-RECORD.

Figure 127 • Search View - Statements that Modify Interest Rate
142

5 Computation Variable Extract
Saving the Logic Segment
It is not necessary to actually save the Logic Segment for the Computation Variable to
demonstrate this scenario. However, since this computation is essentially a company
business rule, you should save the Logic Segment in the AKR for future reference.

To save the segment

1 Select File Save segment and press Enter to display the File - Save Logic Segments
pop-up, as shown in Figure 128. This pop-up lists all Logic Segments created during
an Encore session.

Figure 128 • File - Save Logic Segment Pop-up

2 Type S next to the Logic Segment COMPUTATION-VARIABLE-0001 and press
Enter to display the File - Save Segment pop-up (see Figure 129 on page 144).

Note:
To generate the Logic Segment using a batch job, use the B line command to select
the desired Logic Segment. See the online help for more information about batch
generation.
143

 ASG-Encore User’s Guide
3 On the File - Save Segment pop-up, type the segment name, a short description, and
if desired, a long description, as shown in Figure 129.

Figure 129 • File - Save Segment Pop-up

4 Press Enter to return to the File - Save Logic Segments pop-up where a message
displays in the short message field indicating the segment was successfully added to
the AKR.

5 Press F3 until you return to the Encore Primary screen.

Note:
You can save the Logic Segment under the default name. However, it is
recommended that you save them under meaningful names.
144

5 Computation Variable Extract
Creating Pseudo Source Modules to Change Logic Segment
Results

If the program being analyzed contains a CALL to a program that has not been analyzed,
you should consider creating pseudo source to obtain better results in an extracted
program.

Pseudo Source Modules

These conditions may require creating pseudo source for programs that have not been
analyzed:

• Encore assumes all parameters are both used and modified. If this is not the case,
then pseudo source should be written.

• If the CALLed program is not COBOL.

• You choose not to analyze the CALLed program.

The purpose of the pseudo source module is to identify the inputs and outputs of the
CALLed routine. The pseudo source module must be saved in the AKR.

Each CALL statement parameter is input only, output only, or both input and
output.

— Input-only parameters are used but not modified by the CALLed module.

— Output-only parameters are modified but not used by the CALLed module.

— Input and output parameters are both used and modified by the CALLed
module.

Figure 130 shows an example of a program being re-engineered that contains this
code.

Figure 130 • Creating Pseudo Source Modules - Program Re-engineering Code Example
145

 ASG-Encore User’s Guide
If a Computation Variable extract request is made for the variable PAYMENT at
the DISPLAY statement, you should assume that the preceding CALL statement
and the MOVE LOAN-AMOUNT statement are both required. This assumption
can be made because it appears that the CALL to the INTEREST module is
modifying the PAYMENT parameter. If this assumption is true, the CALL is
required; however, if this assumption is false, the CALL statement is unnecessary
(although the MOVE 0 TO PAYMENT statement would be required).

The report and Computation Variable extract objectives assume that all parameters
are both input and output, which may not always be an accurate assumption. In
some cases, the extract contains more than the minimum set of code because of this
assumption. To obtain completely accurate results, the actual type of each
parameter must be made known to the extract objective process. This can be
accomplished in either of the ways described in these conditions.

• Analyze the CALLed program and save it in the AKR containing the
CALLing program. In some cases, this may not be feasible, e.g., the program
source is not accessible, the program may be so large that sufficient resources
are unavailable, or the program is non-COBOL.

• Write a pseudo source module, identifying the type of each parameter.
Analyze this pseudo source module instead of the actual CALLed program.

See "The Analyze Facility" on page 36 for more information about using Encore to
analyze a program.

Defining precise parameter types in a pseudo source module results in more
accurate extract results for the report and Computation Variable extracts, because
unnecessary code cannot be extracted.

These are the rules for writing pseudo source modules:

• For input parameters, use a MOVE data-item TO ws-data-item
statement; where ws-data-item is a WORKING-STORAGE data item
that is the same data type as data-item.

• For output parameters, use a MOVE SPACES TO data-item
statement. A MOVE ZEROES statement may be used if appropriate.

• For output parameters that are only possibly modified (as opposed to
definitely modified) by the CALLed routine, code the MOVE SPACES TO
data-item statement in an IF statement that tests a
WORKING-STORAGE data item.

• Code all inputs before outputs. If a data item is both an input and an output,
code it first as an input and then as an output.

• The LINKAGE SECTION declarations should match the declarations in the
calling program.
146

5 Computation Variable Extract
Figure 131 and Figure 132 are examples of a program that CALLs a non-COBOL
subroutine that calculates an interest amount, and the pseudo source module that
may be written for that subroutine.

Figure 131 • Program Being Re-engineered

Figure 132 • Pseudo Source Module

 In Figure 132, the pseudo source subroutine SUBRTN contains these three
parameters:

• LOAN-AMT

• INTEREST-RATE

• INTEREST-AMT
147

 ASG-Encore User’s Guide
The first MOVE statement of the pseudo source module specifies a use of
LOAN-AMT, indicating that LOAN-AMT is an input parameter.

The second MOVE statement indicates that INTEREST-RATE is also an input
parameter.

The third MOVE statement specifies a modification to INTEREST-AMT,
indicating that it is an output parameter.

Given that the report and Computation Variable extract objectives assume that all
parameters are both input and output, these scenarios explain the example (see the
code of the program being re-engineered in Figure 131 on page 147 and Figure 132
on page 147):

Scenario 1

A Computation Variable extract is performed for the variable WORK-AMOUNT at
the DISPLAY statement.

• Without a pseudo source module, the MOVE 10 TO WORK-AMOUNT
statement would be extracted because it is assumed that WORK-AMOUNT is
both input and output.

• With a pseudo source module, the MOVE statement would not be extracted.

Scenario 2

A Computation Variable extract is performed for the variable WORK-LOAN at the
DISPLAY statement.

• Without a pseudo source module, the CALL statement would be extracted.

• With a pseudo source module, the CALL statement would not be extracted.
148

5 Computation Variable Extract
Including Non-selected Code in the Logic Segment

Under certain conditions, Encore produces a result that does not include all required code.
In Figure 133, assuming that only the READ statement was determined to be part of the
result, Encore would not have extracted line 250 (ADD +1 TO TRAN-CNT).

Figure 133 • Logic Segment Non-selected Code Example

For Computational Variable extracts, Encore allows for the inclusion of omitted lines of
code from the resulting Logic Segment.

1 Select View Logic Segment and press Enter to display the View - Select Logic
Segment pop-up, as shown in Figure 134.

Figure 134 • View - Select Logic Segment Pop-up

2 Type S next to the Logic Segment you saved in the last exercise and press Enter to
display the Source View screen (see Figure 135 on page 150).
149

 ASG-Encore User’s Guide
3 Type LOCATE 243 on the command line and press Enter to position line 243 at the
top of the screen, as shown in Figure 135.

Figure 135 • Expanded Source View Screen - Zoom In Command

4 Place the cursor immediately below line 248 and press PF4 (Zoom in) to expand the
view to include non-selected lines, as shown in Figure 136.

Notice that the expanded lines (249 - 251) are not part of the Logic Segment. They
are not highlighted and they have not been tagged with LOGICSEG.

Figure 136 • Expanded Source View Screen - Zoom In Results
150

5 Computation Variable Extract
5 Type I on line 250 and press Enter, as shown in Figure 137.

Figure 137 • Including Source Line in Logic Segment

Figure 138 shows that the Source code at line 250 is highlighted and has been
included in the Logic Segment.

Figure 138 • Source Line Included in Logic Segment

Because the Logic Segment has been changed, you must save the file before
returning to the Encore Primary screen.

6 Select File Save Segment and press Enter to display the File - Save Logic Segments
pop-up.
151

 ASG-Encore User’s Guide
7 Type S next to the Logic Segment to be saved and press Enter to display the
File - Save Segment pop-up. Type the appropriate descriptive information and press
Enter to return to the File - Save Logic Segments pop-up. Press PF3 until you return
to the Encore Primary screen.

Note:
In addition to including the identified statement, Encore ensures that all of the code
necessary to execute the statement is also included in the generated module.

Controlling Extract Boundaries
There are instances when each extract objective gives you more code than you want, e.g.,
a program processes multiple transactions. In these instances, you need to be able to
specify the extract boundaries to better control the amount of extractable code.

In this example, you want to extract all of the compute statements for a variable
associated with a particular transaction type and generate a CALLable module. First, you
need to assess which type of extract you should use by considering these options:

• A Perform Range extracts the desired statements mentioned in the example,
however, it also extracts all statements that can be executed by the Perform
statement, including other Perform Ranges and GO TOs.

• A Transaction extract with altered START and END points cannot sufficiently
narrow the scope of the extract unless the statements are adjacent.

• A Report extract isolates the output statements required, however, it also extracts all
contributing or influencing statements from the selected statements to the beginning
of the program, giving you extra code that is not required. Also, the Report extract
does not generate CALLable modules.

• A Computation Variable extract isolates the compute statements for the variable
mentioned in the example. It also extracts all contributing or influencing statements
from the compute statement selected, to the beginning of the program, again
selecting extra statements that are not required. As with the Report extract, it does
not generate CALLable modules.

The Computation Variable extract objective has an option that allows you to extract code
from an existing Perform Range or Transaction Logic Segment. Normally, within the
Report and Computation Variable extract objectives, code is extracted from the selected
statements to the beginning of the program. When you perform a Report or Computation
Variable extract from a Logic Segment, the extract boundaries extend from the selected
statements to the beginning of the Logic Segment.
152

5 Computation Variable Extract
Extracting Code from an Existing Logic Segment

To extract code from an existing Logic Segment

1 Follow the same procedure you perform for a conventional Computation Variable
extract (see "Extracting the Computation Variable" on page 135), with this
exception:

When you select the Filter option on the Extract - Data Name List screen (see
Figure 120 on page 136) and the Extract - Computation Variable Filter pop-up
displays, as shown in Figure 139, select the Limit to within an existing Segment
option by typing a forward slash (/) next to the option. Selecting this option
indicates that the extract is performed against an existing Logic Segment. In
addition to typing data in the various fields as you would for a conventional extract,
use this option to indicate that the extract is to be done within a Logic Segment.

Figure 139 • Selecting the Limit to within an Existing Segment Option

153

 ASG-Encore User’s Guide
2 Press Enter to display the Select Extract-within Logic Segment pop-up, as shown in
Figure 140.

3 Select the Logic Segment for code extraction. Only Perform Range or Transaction
Logic Segments are displayed in the list of Logic Segments. Only one Logic
Segment can be selected.

Figure 140 • Select Extract-Within Logic Segment Pop-up

4 Press Enter until you return to the Extract - Data Name List pop-up.

From this point, the extract procedures are the same as for a conventional
Computation Variable extract (see "Extracting the Computation Variable" on page
135). Only those statements that lie within the selected Logic Segment are eligible
for extract.

Note:
If the Logic Segment contains IO statements, you may want to consider selecting
the CALLS to IO Module(s) option when you generate the program to avoid the
COBOL constraint of referencing files across program boundaries.
154

5 Computation Variable Extract
Computation Variable Extract Compilation Issues
When Encore generates CALLable modules from a Computation Variable extract, certain
conditions may occur that cause compile errors or cause the program not to run. As
shown in this section, comment messages are inserted in the generated modules when
these conditions occur:

Condition 1
Encore has generated statements that cause normal exits from the program.

Condition 2
Encore has determined that a COPY statement cannot be used. Portions of the copybook
are reproduced inline.

Cause Action

Encore generates program exit
statements (GOBACK, EXEC CICS
RETURN) to ensure that the program
exits properly.

Review the conditions surrounding each
generated exit statement to determine if the
default exit statement should be augmented
or replaced.

Cause Action

Under certain conditions, the original
COPY statement cannot be used in a
generated module, such as when
COPY statements contain dead code.
In addition to this, Encore generates
comments indicating why the COPY
statement could not be used as
originally coded.

Determine why the COPY member was not
usable. No action is required, however, the
COPY member contents may be modified to
use it in this context.
Example:
A copy book is used in many programs.
Some statements are not referenced in this
program and, therefore, would be
considered dead code.
155

 ASG-Encore User’s Guide
Condition 3
Encore has tailored OPEN or CLOSE statements.

Condition 4
STOP RUN in empty Exception clauses (i.e., ON SIZE, ON OVERFLOW)

Cause Action

Encore ensures that all necessary
file-related statements are extracted,
including OPEN statements and
CLOSE statements. When an OPEN or
CLOSE statement includes references
to files that are not required by the
Logic Segment, Encore generates a
partial statement to reference only the
desired files.

None.

Cause Action

COBOL does not permit a NEXT
SENTENCE to appear in an exception
clause. Encore inserts a STOP RUN in
an exception clause that is part of a
Computation Variable extract.

Revise to include a more meaningful error
handling routine.
156

6
 6Transaction Extract
This chapter contains a practical demonstration of how to perform a Transaction extract
to create a replacement standalone program, and contains these sections:

Introduction
This chapter contains a scenario that demonstrates the technique of using a Transaction
extract to create a replacement standalone program called INTCALC, which does not
contain processing logic for money market accounts.

The Encore demonstration program VIARDEMO is used for the examples in this chapter.
For a partial listing of VIARDEMO, see "The Demonstration Program" on page 49 .

Section Page

Introduction 157

The Business Scenario 158

Starting an Encore Session 159

Extracting the Objective 160

Creating the Replacement Module 165

Changing the Start/End Points 169

Transaction Extract Compilation Issues 178
157

 ASG-Encore User’s Guide
The Business Scenario
You have been assigned the task of removing all processing logic for money market
accounts in the Interest Calculation Program (ICP).

After performing your initial analysis, you build a checklist that contains these tasks,
which are involved in extracting the code you require:

• Identify the variable that contains the identifying code for money market accounts.

• Extract all of the logic for money market account processing.

• Generate a replacement module without the money market account processing
logic.

You determine that the money market accounts are identified on the input file by the
MMA code in the data field ACCT-TYPE of ACCT-RECORD. The conditional that
drives the transaction processing is in paragraph UPDATE-ACCT in the VIARDEMO
demonstration program, as shown in Figure 141. Since the logic you need to extract is
driven by the MMA transaction code, you determine that the best extraction method
would be a Transaction extract.

Figure 141 • Money Market Accounting Example

Note:
The choice of a particular extract method does not necessarily mean it is the best or only
method. Preliminary analysis helps narrow the available choices. The final choice is up to
you.
158

6 Transaction Extract
Starting an Encore Session

To start the Encore session

Note:
Logon procedures and AKR information are unique to your programming environment.
If necessary, contact your systems administrator or your Encore coordinator for the
correct dataset names.

1 Logon to the ESW Primary screen.

2 Select Re-engineer Program and press Enter to display the Encore Primary screen.

Or

Type EN on the command line and press Enter to display the Encore Primary
screen.

3 Select File Open from the Encore Primary screen action bar and press Enter to
display the File - Open Program pop-up.

4 Type the AKR dataset name in the Data Set Name field and VIARDEMO in the
Program Name field and press Enter.

See "Starting an Encore Session" on page 59 for more information.
159

 ASG-Encore User’s Guide
Extracting the Objective

To perform a Transaction Extract using the ACCT-TYPE variable

1 Select Extract Transaction and press Enter to display the Extract - Name Logic
Segment pop-up, as shown in Figure 142.

The Logic Segment Name field contains a default name, generated by Encore for
the Logic Segment that you extract. You can assign your own name to the Logic
Segment or you can use the default name. For this example, use the default name
TRANSACTION-0001.

Figure 142 • Extract - Name Logic Segment Pop-up
160

6 Transaction Extract
2 Press Enter to display the Extract - Transactions Paths List screen, which lists all
transaction paths in the program, as shown in Figure 144.

Figure 143 • Extract - Transaction Paths List Screen

The first step in the process is to filter the transaction lists to select those paths
referencing ACCT-TYPE.
161

 ASG-Encore User’s Guide
3 Type Filter on the command line and press Enter (or press PF5) to display the
Extract - Data Name List Filter pop-up, as shown in Figure 144.

This pop-up displays all the data names associated with the transaction paths that are
listed for the program. You can select a data name from the list, or you can use the
Filter option to reduce the list or select a specific data name. For this exercise, use
the filter option to select the data name ACCT-TYPE.

Figure 144 • Extract - Data Name List Filter Pop-up

4 Type Filter again on the command line and press Enter (or press PF5) on the
Extract - Data Name List Filter pop-up to display the Extract - Transaction Variable
pop-up (see Figure 145 on page 163).

See the online help for more detailed information about Transaction extract
features.
162

6 Transaction Extract
5 Type ACCT-TYPE in the Data Name field to select all transaction paths using this
variable name, as shown in Figure 145.

You can also enter a pattern for the variable name containing wildards (? for one
character; * for zero or more characters) to reduce the list of available selections.

Figure 145 • Extract - Transaction Variable Pop-up
163

 ASG-Encore User’s Guide
6 Press Enter to redisplay the Extract - Transaction Paths List screen, as shown in
Figure 146.

This screen redisplays with all paths referencing the variable ACCT-TYPE
highlighted and the message ASG4027I DATA NAME “ACCT-TYPE”
SELECTED in the long message area. You can indicate which conditionals (IF
statements) can be true (T) for the replacement module, which conditionals can be
false (F), and which conditionals can be true or false (blank). For this extract, you
want to remove the logic associated with the MMA transaction code, so the
statement associated with that transaction must be false.

Figure 146 • Extract - Transaction Paths List Screen with Variable Name Selected

7 Type F on line 281, which disables the True path for this conditional in the
replacement module. The remaining IFs for ACCT-TYPE are left blank, since they
can be either true or false. Press Enter.

8 Press Enter twice to return to the Encore Primary screen.
164

6 Transaction Extract
Creating the Replacement Module

To create the replacement module

1 Select Generate COBOL module and press Enter to display the Generate - Select
Logic Segment screen, as shown in Figure 147.

This screen lists all of the Logic Segments you have extracted during your current
session, as well as all Logic Segments that have been saved in the AKR. The last
Logic Segment extracted (in this case TRANSACTION-0001) is highlighted and
tagged for selection. TRANSACTION-0001 is the Logic Segment you use to
generate the COBOL program.

Figure 147 • Generate - Select Logic Segment Screen

Note:
The Generate - Select Logic Segment pop-up is scrollable, but you must first blank
out the S select code.
165

 ASG-Encore User’s Guide
2 Press Enter to display the Generate - COBOL Module pop-up, as shown in
Figure 148.

3 A default name is assigned in the Program ID field on this pop-up, but can be
changed as required. For this example, you need to change the name in the Program
ID field to INTCALC and then press Enter to display the Edit screen, (see Figure 149
on page 167).

Figure 148 • Generate - COBOL Module Pop-up
166

6 Transaction Extract
4 Type CREATE on the command line and type C 9999 on the first line of code, as
shown in, Figure 149. Press Enter to display the Edit/View - Create screen (see
Figure 150).

Figure 149 • Edit Screen

5 Type the name you want to save the program under (INTCALC in this example),
verify or clear any data in the Data Set Name and Volume Serial fields, and press
Enter to save the member and return to the Edit screen.

Figure 150 • Edit/View - Create Screen
167

 ASG-Encore User’s Guide
Note:
CREATE may be issued only against an empty member. If INTCALC already
exists in your library, use the REPLACE command. See the online help and the
ASG-Encore Reference Guide for more information about these commands.

Figure 151 shows the Encore-generated notes added to the INTCALC standalone
program indicating that STOP-RUN was inserted into the code.

Figure 151 • Encore Blocked False Path - INTCALC - 1

Figure 152 show the generated code blocking the false path in the INTCALC
standalone program. This is the result of marking the conditional for
ACCT-TYPE = MMA false. Encore generates a NO PATH and a STOP RUN if the
conditional is ever true, but you may want to change these entries to something
more meaningful.

Figure 152 • Encore Blocked False Path - INTCALC - 2

Note:
Rather than having Encore display an error message, you can direct Encore to issue
a CALL to your shop standard error abend program (if you have one) by specifying
the name of your abend program on the Options - Product Parameters pop-up (see
Figure 7 on page 27).
168

6 Transaction Extract
To close Encore

1 Press PF3 until you are returned to the Encore Primary screen.

2 Select File Close and press Enter to display the Close Program pop-up.

3 Select Close, discard segments. All unsaved Logic Segments are discarded when you
exit Encore by selecting the Exit option. For this exercise, you do not need to save
any generated data.

Note:
The Exit pop-up displays if you attempt to exit Encore using PF3. From this
pop-up, options are available to save logic segments, discard logic segments, or
cancel the exit and return to Encore.

Changing the Start/End Points
The default START statement is the PROCEDURE DIVISION statement. The default
END statements are all program exits. If the default START and END statements are not
valid for the extract to be performed, they can be changed.

After initiating Encore and opening program VIARDEMO (see "Starting an Encore
Session" on page 159), use these steps to change the default START and END points.

To change START and END point defaults

1 Select Extract Transaction and then press Enter to display the Extract - Name
Logic Segment pop-up.
169

 ASG-Encore User’s Guide
2 Press Enter again to display the Extract - Transactions Path List pop-up, as shown in
Figure 153.

Figure 153 • Extract - Transaction Paths List Pop-up

3 Press PF6 to display the Extract - START/END Statements pop-up, as shown in
Figure 154.

Figure 154 • Extract - START/END Statements Pop-up - Deselect START and END Points

4 Type U on lines 225, 226, and 240 and press Enter to de-select the current START
and END points.
170

6 Transaction Extract
Figure 155 shows the Extract - START/END Statements pop-up redisplayed with
the message NO STARTING STATEMENT in the upper right corner of the screen.

Figure 155 • Extract - START/END Statements Pop-up - Information Message Display

5 Type 2 on the command line, as shown in Figure 156, and press Enter to expand the
display to include all the Procedure Division statements (see Figure 157 on page
172).

Figure 156 • Extract - START/END Statements Pop-up - List All Statements
171

 ASG-Encore User’s Guide
Figure 157 shows that the Extract - START/END Statements pop-up now displays
the expanded information. You are now ready to select a START statement.

Figure 157 • Extract - START/END Statements Pop-up - Expanded View

 To select a new START statement

1 Scroll to line 273 on the redisplayed Extract - START/END Statements pop-up, as
shown in Figure 158.

Figure 158 • Extract - START/END Pop-up - Scrolling to Line 273
172

6 Transaction Extract
2 Type S next to the new START line UPDATE-ACCT, as shown in Figure 159, and
press Enter.

Figure 159 • Extract - START/END Pop-up - Selecting START Statement

Figure 160 shows that the new START line (line 273) now has the START tag on
the far right of the screen. (A START point includes an entire COBOL statement. In
this case, the statement is on line 273.) You are now ready to select an END
statement.

Figure 160 • Extract - START/END Statement Pop-up - Results of Start Change
173

 ASG-Encore User’s Guide
To select a new END statement

1 Scroll to line 325, type E next to the new END line, as shown in Figure 161, and
press Enter.

Figure 161 • Extract - START/END Statement Pop-up - Select END Statement

Figure 162 shows that the display is now highlighted with the END tag on the far
right of the screen. The highlighting indicates all statements that are reachable from
the set START point.

Figure 162 • Extract - START/END Statement Pop-up - Highlighted Display
174

6 Transaction Extract
2 Press Enter to return to the Extract - Transaction Paths List pop-up and press Enter
again to return to the Encore Primary screen. You are now ready to generate a
CALLable submodule.

To generate a CALLable submodule

1 Select Generate COBOL module and press Enter to display the Generate - Select
Logic Segment pop-up.

2 Press Enter to display the Generate - COBOL Module pop-up, type in the required
information, and press Enter.

3 Encore generates a CALLable submodule that executes the code you selected by
setting the new START and END points (see Figure 163).

Figure 163 • Generate - Encore-Generated Callable SubModule

4 After saving the module, press PF3 until you return to the Encore Primary screen.

5 Select File Close and press Enter to display the Close Program pop-up.

6 Select Close, discard segments. All unsaved Logic Segments are discarded when you
exit Encore by selecting the Exit option. For this tutorial, you do not need to save any
generated data.

Note:
The Exit pop-up displays if you exit Encore using the PF3 key. From this pop-up,
options are available to save logic segments, discard logic segments, or cancel the
exit and return to Encore.
175

 ASG-Encore User’s Guide
START/END Usage Notes

When you select Option 2, List ALL statements on the Extract - START/END
Statement pop-up (see step 5 on page 171 and Figure 156 on page 171), all
PROCEDURE DIVISION statements in the program are displayed on the screen.
Selection of START and END statements may be based on the cursor location.

Figure 164 • Start/End Usage Notes Example

The rules for cursor location are explained in these steps, using the code in
Figure 164 as an example. In the rules for selecting a statement, the E line
command (to select an END statement) is used as an example.

• If the E line command is used on a line containing a single COBOL statement,
e.g., line 364, that statement is selected as an END statement, highlighted, and
tagged.

• If the E line command is used on a line containing a COBOL statement that
spans more than one line, e.g., lines 362 and 363, the entire statement is
selected. The E line command could be entered on either line 362 or line 363.
The statement is highlighted and tagged.

• If the E line command is used on a line containing more than one full or
partial COBOL statement (not shown in this example), use this procedure:

— Type E on the selection line and move the cursor to the desired statement
and press Enter. The statement is selected as an END statement,
highlighted, and tagged.
176

6 Transaction Extract
When selecting a START statement, type S next to an executable COBOL statement. If
the selected statement is an unexecutable COBOL statement, these general rules apply:

• Comment lines and compiler directives occurring at the end of an executable code
block are considered part of the paragraph or section that follows. The starting point
begins at the paragraph or section name that follows.

• A line followed by one or more executable statements prior to the succeeding
section, or a line that is part of the last section, is considered part of the preceding
section. The starting point is the end of the statement, before the comment or
directive.

• Blank lines that occur at the end of an executable code block, and that are not
preceded by a comment or compiler directive, are considered part of the preceding
paragraph or section. The starting point is at the end of the last executable statement
in the preceding paragraph.

• A blank line that follows all executable statements of the preceding paragraph, and
that is preceded by a comment or compiler directive, is considered part of the
following paragraph. The starting point is the paragraph or section name in the
following paragraph.

• A blank line that is followed by one or more executable statements, or that is part of
the last paragraph or section of the program, is considered part of the preceding
paragraph. The starting point is the end of the preceding paragraph.

The statements that compose the current transaction are highlighted. The highlighting
changes if the START or END statements are redefined, or if conditional paths are
blocked or unblocked on the Extract - Transaction Paths List screen.

Note:
A Transaction Logic Segment consists of those statements that can be reached from the
START point and that reach an END point without passing beyond an END point or
program exit, or without passing through a blocked conditional path.
177

 ASG-Encore User’s Guide
Transaction Extract Compilation Issues
When Encore generates modules from a Transaction extract, certain conditions may
occur that cause compile errors or cause the program not to run. As shown in this section,
Encore inserts comment messages in the generated modules when these conditions occur.

Condition 1
An unnamed 01 level data item, moved from WORKING-STORAGE to LINKAGE,
must be assigned a valid COBOL data item name (sub-program request).

Cause Action

• An unnamed 01 level was moved
to the LINKAGE SECTION.
When Encore generated the
LINKAGE SECTION for a
subprogram, it did not rename data
items that were moved from the
WORKING-STORAGE
SECTION.

• COBOL syntax allows an
unreferenced 01 level data item to
go unnamed in
WORKING-STORAGE, but not in
LINKAGE.

• Encore assigns the name
'_FILLER' to the data item and
issues this message. The
subprogram cannot successfully
compile until the data item is given
a valid name.

• A similar situation occurs when
two 01 levels are defined with the
same name and are not referenced
at the 01 level. In this case, the
compiler detects a duplicate name.

Assign a valid COBOL data item name to
each LINKAGE SECTION data item with
the name '_FILLER'.
178

6 Transaction Extract
Condition 2
Encore has generated statements to cause normal and abnormal exits from the program.

Condition 3
Encore has determined that a COPY statement cannot be used. Portions of the copybook
are reproduced inline.

Cause Action

Encore generates program exit
statements (STOP RUN, GOBACK,
EXEC CICS RETURN, EXEC CICS
ABEND) to ensure that the program exits
properly. A normal program exit is
generated when the intended function of
the program is complete. For a
transaction objective, an abnormal
program exit is generated for conditional
clauses that have been blocked using
TRUE/FALSE.

Review the conditions surrounding each
generated exit statement to determine if
the default exit statement should be
augmented or replaced. For a transaction
objective, ensure that the proper program
paths were selected.

Cause Action

Under certain conditions, the original
COPY statement cannot be used in a
generated module:
• When data elements in the COPY

statement contain definitions split
between the
WORKING-STORAGE and
LINKAGE sections.

• When COPY statements contain
dead code.

• When the contents of a COPY
statement used in the LINKAGE
SECTION contain the VALUE
clause.

In addition to this message, Encore
generates comments indicating why the
COPY statement could not be used as
originally coded.

Determine why the COPY member was
not usable. No action is required, however,
the COPY member contents may be
modified in order to use it in this context.
Example:
A copybook contains both FD and data
item definitions. One or more of the data
item definitions must be used in the
LINKAGE SECTION.
179

 ASG-Encore User’s Guide
Condition 4
Encore has generated a LABEL target used to transfer control to a transaction START
statement.

Condition 5
Encore has generated a DISPLAY statement prior to each abnormal program exit.

Note:
A DISPLAY statement is not generated for a CICS program, or when a subroutine is
specified in the COBOL Module Exit field on the Options - Product Parameters pop-up
(see Figure 7 on page 27).

Cause Action

For a transaction objective Logic
Segment, the start point of the transaction
was not the first statement of the program
module. Encore generated a label, with a
GO TO statement to branch to that label,
to create a path to the transaction code.

Review and verify.

Cause Action

Encore has generated DISPLAY
statements just prior to a generated
abnormal program exit.

Review the conditions surrounding each
generated DISPLAY statement to
determine if it should be augmented or
replaced. Ensure that a DISPLAY is an
appropriate action for the condition that
occurred.
180

7
 7Report Extract
This chapter provides a practical demonstration of how to perform a Report extract to
create sample programs that perform month-end calculations and produce exception
reports, and contains these sections:

Introduction

This chapter demonstrates how to use Encore to create these programs:
• A program that performs all of the month-end calculations for the different types of

checking accounts without producing the exception report.
• A standalone program that produces an exception report.

Section Page

Introduction 181

The Business Scenario 182

Starting an Encore Session 183

Extracting the Report 184

Creating the COBOL Module 188

Understanding the Results of the Extract 191

Creating the Complement Module 194

Complement Module - Understanding Generated Notes 198

Using Pseudo Source Modules to Change Logic Segments 199

Controlling Extract Boundaries 207

Report Extract Compilation Issues 210
181

 ASG-Encore User’s Guide
The Encore demonstration program VIARDEMO is used for the examples in this chapter.
For a partial listing of VIARDEMO, see "The Demonstration Program" on page 49 .

The Business Scenario

The Universal Bank has a program that does the month-end calculations for each type of
checking account that is run at the close of business at month-end. The process cycle
requires the maximum time allowed to run in the available process window. The program
produces an exception report that is produced after month-end (see Figure 165).
Management has requested that the report be run standalone, thereby extending the
process window. Extracting the report from the existing program would be time
consuming and carries the risk of corrupting the current program.

Figure 165 • Report Extract Business Scenario Example

Encore can be used to automate the decomposition process of removing the report from
the month-end calculation program without changing the rest of the program's functions.
In addition, Encore does not change the original program so there is no danger of
inadvertently changing the calculation functionality.

The object of this decomposition exercise is to remove a file and all the data statements
and logic statements that contribute to the output file in the program. The Report extract
locates the minimum set of statements that contribute to the content of an output file,
when the IO statements that produce the file are identified. For this reason, the logical
extract choice is the Report extract.
182

7 Report Extract
Starting an Encore Session

To start the Encore session

Note:
Logon procedures and AKR information are unique to your programming environment.
If necessary, contact your systems administrator or your Encore coordinator for the
correct dataset names.

1 Logon to the ESW Primary screen.

2 Select Re-engineer Program and press Enter to display the Encore Primary screen.

Or

Type EN on the command line and press Enter to display the Encore Primary
screen.

3 Select File Open and press Enter to display the File - Open Program pop-up.

4 Type the AKR dataset name in the Data Set Name field and VIARDEMO in the
Program Name field and press Enter.

See "Starting an Encore Session" on page 59 for more information.
183

 ASG-Encore User’s Guide
Extracting the Report

To select the Report extract EXCEPTION-FILE from VIARDEMO

1 Select Extract Report and press Enter to display the Extract - Name Logic Segment
pop-up, as shown in Figure 166.

The name field on this pop-up contains an Encore-generated default name. You can
assign your own name to the Logic Segment, or you can use the default name. For
this example, use the default name REPORT-0001.

Figure 166 • Extract - Name Logic Segment Pop-up

2 Press Enter to display the Extract - Report Name List pop-up (see Figure 167 on page
185).
184

7 Report Extract
3 Type S next to the FD name EXCEPTION-FILE and press Enter to display the
Extract - Source Ordered View pop-up (see Figure 168 on page 186).

Figure 167 contains a list of all report names in the program.

Figure 167 • Extract - Report Name List Pop-up

Note:
You can reduce the list of selectable names by pressing PF5, which displays the
Extract - Report Name Filter pop-up. This pop-up is used to specify filtering
criteria. See the online help for more information about the Extract - Report Name
Filter pop-up.
185

 ASG-Encore User’s Guide
4 Type S next to line numbers 335, 336, 341, and 342 and press Enter, as shown in
Figure 168. This pop-up displays all of the IO statements associated with
EXCEPTION-FILE. You need to extract all statements that contribute to the output
data.

Figure 168 • Extract - Source Ordered View Pop-up - Statement Selected

5 Press Enter again to return to the Extract - Report Name List pop-up (see Figure 169
on page 187).
186

7 Report Extract
The message in the long message area shown in Figure 169 indicates that the
Report Statements for the EXCEPTION-FILE report was successfully selected.

6 Press Enter to return to the Encore Primary screen.

Figure 169 • Extract - Report Name List Pop-up

 See the online help for more detailed information about Extract features.
187

 ASG-Encore User’s Guide
Creating the COBOL Module

Now you need to create a standalone module to produce the Exception report. This is
done by using the Logic Segment created in "Extracting the Report" on page 184. The
module contains all of the statements required to produce the Exception Report along
with the necessary file and working storage elements.

1 Select Generate COBOL module and press Enter to display the Generate - Select
Logic Segment pop-up, as shown in Figure 170.

Figure 170 • Generate - Select Logic Segment Pop-up

2 Type S next to the Logic Segment name REPORT-0001 and press Enter to display
the Generate - COBOL Module pop-up (see Figure 171 on page 189).
188

7 Report Extract
3 Type REPTPRGM in the Program ID field and press Enter to display the Edit screen
(see Figure 172).

Figure 171 • Generate COBOL Module Pop-up

4 Type CREATE on the command line and type C 9999 on the first line of code. Press
Enter to display the Edit/View - Create pop-up (see Figure 173 on page 190) to save
the module in your source library.

Figure 172 • Edit Screen
189

 ASG-Encore User’s Guide
5 Type the name you want to save the program under in your source library
(REPTPRGM in this example, as shown in Figure 173), verify or clear any data in the
Data Set Name and Volume Serial fields, and press Enter. You are returned to the
Edit screen where message Member REPTPRGM created is displayed in the
upper right corner of the screen confirming that the member has been successfully
saved (see Figure 174 on page 191).

Figure 173 • Edit/View - Create Pop-up
190

7 Report Extract
Understanding the Results of the Extract

Note:
To better understand the results of the extract, see "The Demonstration Program" on page
49 for an overview of the Encore demonstration program VIARDEMO.

As a result of the Report extract, a standalone program was created that contains all of the
necessary statements, files, and data elements to produce the Exception report.
Figure 174 shows the comments generated by Encore at the beginning of the module. The
comments indicate the extract objective type, the name of the file extracted, and the line
numbers in the original program that were extracted.

Figure 174 • Report Module - Screen 1
191

 ASG-Encore User’s Guide
Figure 175 shows how Encore flags any code changes it has made with comments
imbedded within the program.

Figure 175 • Report Module - Screen 2

Encore has included only those statements and files that contribute to the creation of the
Exception Report. Notice in Figure 176 that ACTION-FILE was not extracted from
VIARDEMO, since it does not contribute to the creation of the Exception Report file.

Figure 176 • Report Module - Screen 3
192

7 Report Extract
Figure 177 shows that the OPEN and CLOSE statements in VIARDEMO reference
TRAN-FILE, ACCT-FILE, EXCEPTION-FILE, and ACTION-FILE. Since
ACTION-FILE was not extracted, Encore modified the OPEN and CLOSE statements in
REPTPRGM that referenced ACTION-FILE. The original OPEN and CLOSE statements
remain in the program, but they are commented out.

After reviewing the extract results, press PF3 until you return to the Encore Primary
screen.

Figure 177 • Report Module - Screen 4
193

 ASG-Encore User’s Guide
Creating the Complement Module

After generating the standalone program, you can create the Complement Module to the
standalone. The Complement Module is the original program with the statements defined
by the extracted logic Segment removed. The program does the month-end processing
but does not generate the Exception Report. The Complement Module Generation facility
is used to create the complement of the original program.

To create the Complement Module

1 Select Extract Complement and press Enter to display the Extract - Name Logic
Segment pop-up, as shown in Figure 178.

Figure 178 • Extract - Name Logic Segment Pop-up

2 Accept the default name and press Enter to display the Extract - Complement pop-up
(see Figure 179 on page 195).
194

7 Report Extract
3 Type S next to Logic Segment name REPORT-0001, as shown in Figure 179, and
press Enter.

This pop-up is used to select the Logic segments to be excluded from the original
program. Since you have extracted the logic for creating the exception report as a
standalone program, the Complement Module would not create the Exception
report. For this reason, you need to exclude Logic Segment REPORT-001.

Figure 179 • Extract - Complement Pop-up

4 Press Enter again to return to the Encore Primary screen.
195

 ASG-Encore User’s Guide
5 Select Generate COBOL Module and press Enter to display the Generate - Select
Logic Segment pop-up, as shown in Figure 180.

Figure 180 • Generate - Select Logic Segment Pop-up

6 Type S next to COMPLEMENT-0002 and press Enter to select it and display the
Generate - COBOL Module pop-up, as shown in Figure 181.

Figure 181 • Generate - COBOL Module Pop-up
196

7 Report Extract
7 Type CALCPGM in the Program ID name field and press Enter to display the Edit
screen, as shown in, as shown in Figure 182.

8 Type CREATE on the command line and type C 9999 on the first line of code. Press
Enter to display the Edit/View - Create pop-up to save the member (see Figure 183).

Figure 182 • Edit Screen

9 Type the name you want to save the program under (CALCPGM in this example),
verify or clear any data in the Data Set Name and Volume Serial fields, and press
Enter.

Figure 183 • Edit/View - Create Pop-Up - Save the Complement Module
197

 ASG-Encore User’s Guide
Program CALCPGM is created. This program contains all of the logic of the
original program, except for the extracted Logic Segment, and is stored in your
COBOL source library.

Complement Module - Understanding Generated Notes

When Encore creates the Complement Module, remarks are generated in the module
concerning any statements modified by Encore.

Note 1, as shown in Figure 184, is generated whenever a Complement Module is created
in anything other than a Perform Range extract. A Complement Module may include a
CALL to a submodule. Since the CALL is not automatically generated, as in a Perform
Range extract, you must place any required CALLs to submodules wherever appropriate.
In this case, no CALLable submodule was created, so no action is required for this
message.

Figure 184 • Complement Module Descriptive Notes
198

7 Report Extract
Using Pseudo Source Modules to Change Logic Segments

Pseudo Source Modules

If the program being analyzed contains a CALL to a non-COBOL program, or to a
program that has not been analyzed, you should consider creating pseudo source to obtain
better results in an extracted program under these conditions:

• If all parameters are not used and/or modified, pseudo source should be written.

• If the CALLed program is not COBOL.

• You choose not to analyze the CALLed program.

The purpose of the pseudo source module is to identify the inputs and outputs of the
CALLed routine. The pseudo source module must be saved in the AKR.

Each CALL statement parameter is input-only, output-only, or both input and output.

• Input-only parameters are used but not modified by the CALLed module.

• Output-only parameters are modified but not used by the CALLed module.

• Input and output parameters are both used and modified by the CALLed module.

For example, Figure 185 shows a program being re-engineered that uses this code:

Figure 185 • Using Pseudo Source Modules - Program Re-engineering Code Example

If a Report extract request is made for the variable PAYMENT at the DISPLAY
statement, it may be assumed that the preceding CALL statement and the MOVE
LOAN-AMOUNT statement are both required. This assumption can be made because it
appears that the CALL to the 'INTEREST' module is modifying the PAYMENT
parameter. If this assumption is true, the CALL is required; however, if this assumption is
false, the CALL statement is unnecessary (although the MOVE 0 TO PAYMENT
statement would be required).
199

 ASG-Encore User’s Guide
The report and Computation Variable extract objectives assume that all parameters are
both input and output, which may not always be an accurate assumption. In some cases,
the extract contains more than the minimum set of code because of this assumption. To
obtain completely accurate results, the actual type of each parameter must be made
known to the extract objective process. This can be accomplished in either of the these
two ways:

• Analyze the CALLed program and save it in the AKR containing the CALLing
program. In some cases, this may not be feasible, e.g., the program source is not
accessible, the program may be so large that sufficient resources are unavailable, or
the program is non-COBOL.

• Write a pseudo source module, identifying the type of each parameter. Analyze this
pseudo source module instead of the actual CALLed program.

See "The Analyze Facility" on page 36 for more information about using Encore to
analyze a program.

Precisely defining the parameter types in a pseudo source module results in more accurate
extract results for the report and Computation Variable extracts, because unnecessary
code is not extracted.

These are the rules for writing pseudo source modules:

• For input parameters, use a MOVE data-item TO ws-data-item statement.

where:

ws-data-item represents a WORKING-STORAGE data item that is the same
data type as data-item.

• For output parameters, use a MOVE SPACES TO data-item statement. A
MOVE ZEROES statement may be used if appropriate.

• For output parameters that are only possibly modified (as opposed to definitely
modified) by the called routine, code the MOVE SPACES TO data-item
statement in an IF statement that tests a WORKING-STORAGE data item.

• Code all inputs before outputs. If a data item is both an input and an output, code it
first as an input and then as an output.

• The LINKAGE SECTION declarations should match the declarations in the
CALLing program.
200

7 Report Extract
Figure 186 and Figure 187 on page 202 are examples of a program that CALLs a
non-COBOL subroutine that calculates an interest amount, and the pseudo source module
that may be written for that subroutine.

Figure 186 • Program Being Re-engineered
201

 ASG-Encore User’s Guide
In Figure 187, the pseudo source subroutine SUBRTN contains these parameters:
LOAN-AMT, INTEREST-RATE, and INTEREST-AMT. The first MOVE statement of
the pseudo source module specifies a use of LOAN-AMT, indicating that LOAN-AMT is
an input parameter. The second MOVE statement indicates that INTEREST-RATE is
also an input parameter. The third MOVE statement specifies a modification to
INTEREST-AMT, indicating that it is an output parameter.

Figure 187 • Pseudo Source Module

Because both the report and Computation Variable extract objectives assume that all
parameters are both input and output, these scenarios explain the example (see the code
of the program in Figure 186 on page 201 and Figure 187).

Scenario 1

A Computation Variable extract is performed for the variable WORK-AMOUNT at the
DISPLAY statement.

• Without a pseudo source module, the MOVE 10 TO WORK-AMOUNT statement
would be extracted because it is assumed that WORK-AMOUNT is both input and
output.

• With a pseudo source module, the MOVE statement would not be extracted.
202

7 Report Extract
Scenario 2

A Computation Variable extract is performed for the variable WORK-LOAN at the
DISPLAY statement.

• Without a pseudo source module, the CALL statement would be extracted.

• With a pseudo source module, the CALL statement would not be extracted.

Including Non-selected Code in the Logic Segment

Under certain conditions, Encore produces a result that does not include all required code.

Figure 188 • Logic Segment - Non-selected Code Example

In Figure 188, assuming that only the READ statement was determined to be part of the
result, Encore would not have extracted line 250 relating to TRAN-CNT.

For Reports extracts, Encore allows for the inclusion of omitted lines of code from the
resulting Logic Segment.
203

 ASG-Encore User’s Guide
To include lines in a Logic Segment

1 Select View Logic segment and press Enter to display the View - Select Logic
Segment pop-up, as shown in Figure 189.

Figure 189 • View - Select Logic Segments Pop-up

2 Type S to the left of Logic Segment REPORT-0001 and press Enter to display the
Source View screen, as shown in Figure 190.

Figure 190 • Source View Screen - Non-Expanded
204

7 Report Extract
3 Position line 243 to the top of the screen.

4 Place the cursor immediately below line 248 and press PF4 (Zoom In) to expand the
view to include non-selected lines, as shown in Figure 191. Notice that the expanded
lines (249 - 251) are not part of the Logic Segment. They are not highlighted, nor are
they tagged with LOGICSEG.

Figure 191 • .Source View Screen - Expanded

5 Type I on line 250, as shown in Figure 192, and press Enter to refresh the Source
View screen (see Figure 193 on page 206).

Figure 192 • Source View Screen - Including Source Line in Logic Segment
205

 ASG-Encore User’s Guide
The Source code at line 250 is highlighted and has been included in the Logic
Segment, as shown in Figure 193.

Figure 193 • Source View Screen - Source Line Included in Logic Segment

Because the Logic Segment has been changed, you must save the file before
returning to the Encore Primary screen.

6 Select File Save Segment and press Enter to display the File - Save Logic Segments
pop-up.

7 Type S next to the Logic Segment to be saved and press Enter to display the
File - Save Segment pop-up. Type the appropriate descriptive information and press
Enter to return to the File - Save Logic Segments pop-up. Press PF3 until you return
to the Encore Primary screen.

Note:
In addition to the identified statement, Encore ensures that all the code necessary to
execute the statement is also included in the generated module.
206

7 Report Extract
Controlling Extract Boundaries

There are instances when each extract objective gives you more code than you want. For
example, when the output statements for a particular file are imbedded within a Perform
Range. You want to extract only those output statements imbedded in the Perform Range
and generate a CALLable module.

A Perform Range extracts the desired statements. However, it also extracts all statements
that can be executed by the Perform statement, including other Perform Ranges and GO
TOs. A Transaction extract with altered START and END points does not sufficiently
narrow the scope of the extract unless the statements are adjacent.

A Report extract isolates the output statements mentioned in the first example. It also
extracts all contributing or influencing statements from the selected statements to the
beginning of the program, giving you more code than you want. Also, the Report extract
does not generate CALLable modules.

The Report extract objectives allow you to extract code from an existing Perform Range
or Transaction Logic Segment. Normally, within the Report extract objective, code is
extracted from the selected statements to the beginning of the program. When you
perform a Report extract from a Logic Segment, the extract boundaries are now from the
selected statements to the beginning of the Logic Segment.

Extracting Code from a Logic Segment

When extracting code from an existing Logic Segment, follow the same procedure as you
do when you perform a conventional Report extract (see "Extracting the Report" on page
184) with the exception noted in step 3 below and step 4 on page 208.

To extract code from a Logic Segment

1 Select Extract Report and press Enter to display the Extract - Name Logic Segment
pop-up.

2 Accept the default name and press Enter to display the Extract - Report Name List
pop-up.

3 Type Filter on the command line and press Enter or press PF5 to display the
Extract - Report Filter pop-up (see Figure 194 on page 208). When the
Extract - Report Filter pop-up displays, enter an asterisk (*) in the Report Name
field, which allows you to perform the extract against an existing Logic Segment.
207

 ASG-Encore User’s Guide
4 Select the Limit to within an existing segment option by typing a forward slash (/)
next to the option, as shown in Figure 194. In addition to typing data in the various
fields as you would for a conventional extract, the option Limit to within an existing
Segment is used to indicate that the extract is to be done within a Logic Segment.

Figure 194 • Extract - Report Filter Pop-up
208

7 Report Extract
5 Press Enter to display the Select Extract-within-Logic Segment pop-up, as shown in
Figure 195.

This pop-up is used to select the Logic Segment for code extraction. Only Perform
Range or Transaction Logic Segments are displayed in the list of Logic Segments.
Only one Logic Segment can be selected.

Figure 195 • Select Extract - within Logic Segment Pop-up

6 After selecting the Logic Segment, press Enter to highlight the selection. Press Enter
until you to return to the Extract - Report Name List pop-up.

From this point on, the extract procedures are the same as for a conventional Report
extract (see "Extracting the Report" on page 184). Only those statements that lie
within the selected Logic Segment are eligible for extraction.

Note:
Because the Logic Segment contains IO statements, you may want to consider
selecting the CALLs to IO Module(s) option when you generate the program to
avoid the COBOL constraint of referencing files across program boundaries.
209

 ASG-Encore User’s Guide
Report Extract Compilation Issues

When Encore generates standalone replacement and Complement Modules from a Report
Range extract, certain conditions may occur that could cause compile errors or the
program not to run at all. As shown in this section, Encore inserts comment messages in
the generated modules when these conditions occur.

Condition 1

Encore has generated statements that cause normal exits from the program.

Condition 2

Encore has determined that a COPY statement cannot be used. Portions of the copybook
are reproduced inline.

Cause Action

Encore generates program exit
statements (GOBACK, EXEC CICS
RETURN) to ensure that the program
exits properly.

Review the conditions surrounding each
generated exit statement to determine if
the default exit statement should be
augmented or replaced.

Cause Action

Under certain conditions, the original
COPY statement cannot be used in a
generated module, such as when COPY
statements contains dead code.
In addition to this, Encore generates
comments indicating why the COPY
statement could not be used as originally
coded.

Determine why the COPY member was
not usable. No action is required, however,
the COPY member contents may be
modified to use it in this context.
Example:
A copybook is used in multiple programs.
When it is copied into one program, it
contains statements that are not referenced
by this particular program. Those
statements are considered dead code.
210

7 Report Extract
Condition 3

Encore has generated a DISPLAY statement prior to each abnormal program exit.

Note:
A DISPLAY is not generated for a CICS program, or when a subroutine is specified on
the COBOL Module Exit field on the Options - Product Parameters pop-up (see Figure 7
on page 27).

Condition 4

Encore has tailored OPEN or CLOSE statements.

Condition 5

STOP RUN in empty Exception clauses (i.e., ON SIZE, ON OVERFLOW).

Cause Action

Encore has generated DISPLAY
statements just prior to a generated
abnormal program exit.

Review the conditions surrounding each
generated DISPLAY statement to
determine if it should be augmented or
replaced. Ensure that a DISPLAY is an
appropriate action for the condition that
occurred.

Cause Action

For Computation Variable and report
objectives, Encore ensures that all
necessary file-related statements are
extracted, including OPENs and
CLOSEs. When an OPEN or CLOSE
statement includes references to files that
are not required by the Logic Segment,
Encore tailors the statement to reference
only the desired files.

None.

Cause Action

COBOL does not permit a NEXT
SENTENCE to appear in an exception
clause. Encore inserts a STOP RUN in an
exception clause that is part of a Report
Variable extract.

Revise to include a more meaningful error
handling routine.
211

 ASG-Encore User’s Guide
212

8
 8 CICS Server Extract
This chapter contains a practical demonstration of how to perform a CICS server extract
to create a COMMAREA-based server program from a 3270 CICS
pseudo-conversational program, and contains these sections:

Introduction

In addition to demonstrating the technique of using a CICS server extract to create a
COMMAREA-based server program from a 3270 CICS pseudo-conversational program,
this chapter also discusses the various ways to use a server program to accomplish the
goal discussed in The Business Scenario, including execution and compilation issues.

Note:
The Encore demonstration program VIARBRWS is used for the examples in this chapter.

Section Page

Introduction 213

The Business Scenario 214

Conversion Process 215

Starting an Encore Session 216

Extracting the CICS Server Program 217

Generating the CICS Server Module 223

Understanding the Results of the CICS Server Module Generation 234

CICS Server Extract Compilation Issues 242

Extracting the Self Directed Server Program 245

Using IBM Solutions 254
213

 ASG-Encore User’s Guide
The Business Scenario

You have a CICS application that tracks the 401(K) contributions made by your
employees. The application allows new contributions to be made, past contributions to be
updated to correct data entry errors, and all past contributions to be viewed. Application
users have requested that the view function be made available through a web browser.
You have tried web access to CICS through 3270 Bridge, but you know that this is a
short-term solution because Bridge depends on the screen layout, which may change
from time to time. You would also like the solution to be adaptable to new ways of
interfacing to the external world, e.g., through a Java servlet that performs additional
processing before generating an HTML page.

The implementation of web access for existing CICS applications should be viewed as a
re-engineering process. For applications where presentation logic and business logic are
intermixed, migration to another presentation medium using the existing presentation
logic may be inefficient or impossible depending on your current environment. Encore
allows you to separate presentation logic and business logic in both conversational and
pseudo-conversational CICS programs, resulting in a CICS server program containing
business logic. Once the CICS server program is isolated from the presentation logic, it
becomes a business logic component that can be invoked from a web server, as well as
from other client types, (e.g., Java servlets, MQSeries, and CICS clients on other
platforms).

This chapter demonstrates how this business scenario can be handled by Encore through
its server extract and generation facilities.

Note:
This process also includes steps that are performed outside of Encore.
214

8 CICS Server Extract
Conversion Process

Figure 196 shows the process of converting the browse function in the application to
support web access.

To convert the application browse function

1 Analyze the browse program for Encore. See "The Analyze Facility" on page 36 for
more information about using Encore to analyze a program.

2 Extract the logic responsible for record retrieval. The resulting program is known as
the Next-Page server module. For this demonstration, extract the logic responsible
for retrieving records in the backward direction, with the assumption that employees
would want to view the most recent records first.

3 Generate the server program containing the extracted logic.

Figure 196 • CICS Server Extract/Generation Business Scenario Example
215

 ASG-Encore User’s Guide
Starting an Encore Session

To start the Encore session

Note:
Logon procedures and AKR information are unique to your programming environment.
If necessary, contact your systems administrator or your Encore coordinator for the
correct dataset names.

1 Logon to the ESW Primary screen.

2 Select Re-engineer Program and press Enter to display the Encore Primary screen.

Or

Type EN on the command line and press Enter to display the Encore Primary
screen.

3 Select File Open and press Enter to display the File - Open Program pop-up.

4 Type the AKR dataset name in the Data Set Name field and VIARBRWS in the
Program Name field and press Enter.

See "Starting an Encore Session" on page 59 for more information.
216

8 CICS Server Extract
Extracting the CICS Server Program

To select a Server extract

1 Select Extract Server and press Enter to display the Extract - Name Logic Segment
pop-up, as shown in Figure 197.

The name field on this pop-up contains a default name generated by Encore. You
can assign your own name to the Logic Segment or you can use the default name.
For this example, use the CLIENT-SERVER-0001 default name.

Figure 197 • Extract - Name Logic Segment Pop-up

2 Press Enter to display the Extract - Server pop-up (see Figure 198 on page 218),
which contains a list of available server types.
217

 ASG-Encore User’s Guide
3 Type 1 to select CICS, as shown in Figure 198, and press Enter to display the
Extract - CICS server Endpoints pop-up (see Figure 199 on page 219).

Figure 198 • Extract -Server Pop-up

Note:
If you select the Self Directed server name you can reduce the list of selectable
names by pressing PF5. The Filter - Self Directed Server pop-up displays, which
allows you to specify filtering criteria. See "Extracting the Self Directed Server
Program" on page 245 and the online help for more information about the
Filter - Self Directed Server pop-up.
218

8 CICS Server Extract
4 To ensure that you are selecting the code you want to extract, type V next to the CICS
EXEC you want to view, as shown in Figure 199. Press Enter to display the View
Source pop-up (see Figure 200 on page 220).

This pop-up contains all of the statements associated with the CICS member. You
need to extract all statements that contribute to the output screen.

Figure 199 • Extract - CICS Server Endpoints Pop-up - View Option

219

 ASG-Encore User’s Guide
5 Verify that the CICS EXEC server code selected represents the type of code you
want to extract, as shown in Figure 200. After verifying the code, press PF3 to return
to the Extract - CICS server Endpoints pop-up (see Figure 201). If necessary, repeat
this process until you find the code you want to extract.

Figure 200 • View - Source Pop-up - CICS Extract

6 Type S next to the line you want to select and press Enter to display the
Extract - CICS Server Startpoints pop-up (see Figure 202 on page 221).

Figure 201 • Extract - CICS Server Endpoints Pop-up - Select Option
220

8 CICS Server Extract
7 Type S in the indicated command area or press Enter to accept the selection (all
highlighted text is preselected, see Figure 202). Press Enter to return the
Extract - CICS Server Endpoints pop-up, (see Figure 203).

Figure 202 • Extract - CICS Server Startpoints Pop-up

8 The message displayed in the long message area confirms that the CICS statements
for the EXEC CICS SEND code were successfully selected. Press Enter to display
the Extract - CICS Server Paths pop-up (see Figure 204 on page 222).

Figure 203 • Extract - CICS Server Endpoints Pop-up - Selection Confirmation Message

221

 ASG-Encore User’s Guide
9 The default T (TRUE) or F (FALSE) selections have been made based on the
selection criteria, as shown in Figure 204. An X indicates that the code does not
apply to this extract. You can change the settings, if desired. Press Enter to return to
the Encore Primary screen (see Figure 205).

Figure 204 • Extract - CICS Server Paths Pop-up

The Encore Primary screen displays with a message indicating that the criteria for
the statement extract were successfully selected.

Figure 205 • Encore Primary screen - CICS Statement Selection Confirmation Message

See the online help for more detailed information about CICS extract features.
222

8 CICS Server Extract
Generating the CICS Server Module

Now you are ready to create a standalone CICS server module that contains all of the
statements required to produce the CICS server.

To generate the CICS server module

1 Select Generate Server and press Enter to display the Generate - Select Logic
Segment pop-up, as shown in Figure 206.

Figure 206 • Generate - Select Logic Segment Pop-up

2 Type S next to the Logic Segment name you want, or accept the default selection,
and press Enter to display the first Generate - HOST Copy Member pop-ups (see
Figure 207 on page 224).

Note:
The number of Generate - HOST Copy Member pop-ups displayed during this
procedure depends on the ENDING and STARTING statements selected on the
corresponding Extract - CICS Server Endpoints (see Figure 201 on page 220) and
Extract - CICS Server Startpoints pop-ups (see Figure 202 on page 221). A
minimum of two Generate - HOST Copy Member pop-ups always display for a
generated server.
223

 ASG-Encore User’s Guide
3 Type the new name you want to assign to the DFHCOMMAREA copy member in
the Copy Member field (CPYCOMAR in this example, see Figure 207). Assign the
starting level number and level number increment you want or accept the defaults
(the default record level is 5). Press Enter to display the second Generate - HOST
Copy Member pop-up (see Figure 208 on page 225).

Figure 207 • Generate - HOST Copy Member Pop-up Number 1

224

8 CICS Server Extract
4 Accept the new copy member defaults, as shown in Figure 208, or change the name
and level numbers, and press Enter to display the Generate - HOST Server Module
pop-up (see Figure 209).

Figure 208 • Generate - HOST Copy Member Pop-up - Number 2

5 Type 1 to select Generate Options and press Enter to display the Options - Generate
pop-up (see Figure 210 on page 226).

Figure 209 • Generate - HOST Server Module Pop-up

225

 ASG-Encore User’s Guide
6 Indicate the options you want for the COBOL Module generation, as shown in
Figure 210, and press Enter. Press PF3 to return to the Generate - HOST Server
Member pop-up (see Figure 211 on page 227).

Figure 210 • Options - Generate Pop-up

The COBOL Generation Options pop-up allows you to select these generation
options:

Option Description

Display EDIT Options Displays the ASG-SmartEdit Edit Options screen.

Output to Existing
Library

Allows Encore to insert the generated output directly
into the existing library.

Full DATA DIVISION Specifies whether the full DATA DIVISION should
be carried over into the generated module.

Retain COPY
statements

Specifies whether to retain or expand the copy
statements. Expand is the default. This option is only
used if the items in the COPY member are being
modified by the product. If no modification takes
place, COPY statements are always retained,
regardless of the setting on this option.

In-line Communication
Area

Specifies that you want to include the expanded
COPY Statements in-stream.
226

8 CICS Server Extract
7 Type 2 to select Generate COPY Members, as shown in Figure 211, and press Enter
to display the Generate - COPY Members pop-up (see Figure 212 on page 228).

Figure 211 • Generate - HOST Server Module Pop-up

Retain Source Line
Numbers

Specifies that you want to preserve the original code
columns in the generated module.

Retain PERFORMed
Paragraphs

Specifies that existing PERFORM Statements of
extracted Perform Ranges are replaced with a
PERFORM to an ESW-generated CALL section. If
this option is not selected, existing PERFORM
statements are replaced with CALL statements
(unless the statement is a PERFORM VARYING).

Option Description
227

 ASG-Encore User’s Guide
8 Type S next to the COPY member you want to select, as shown in Figure 212, and
press Enter to display the Edit screen (see Figure 213).

Figure 212 • Generate - COPY Members Pop-up

9 Type CREATE on the command line and type C 9999 on the first line of code. Press
Enter to display the Edit/View - Create pop-up to save the module in your source
library (see Figure 214 on page 229).

Figure 213 • Edit Screen - CREATE Command
228

8 CICS Server Extract
10 Type the name you want to save the member as in your source library, as shown in
Figure 214, verify or clear any data in the Data Set Name and Volume Serial fields,
and press Enter to return to the Edit screen (see Figure 215).

Figure 214 • Edit/View - Create Pop-up - CPYCOMAR Member

11 The Edit screen redisplays with a message confirming that the member has been
created. Press PF3 to return to the Generate - Copy Members pop-up (see Figure 216
on page 230).

Figure 215 • Edit Screen - CPYCOMAR Member Created
229

 ASG-Encore User’s Guide
12 A message displays in the long message area indicating that the COBOL module has
been successfully generated, as shown in Figure 216. The status also changes from
NO to YES under the Generated column. Select the next Copy member and repeat
step 8 on page 228 through step 11 on page 229 to edit and save the member. Once
saved, press Enter and then PF3 to return to the Generate - COPY Member pop-up
(see Figure 217 on page 230).

Figure 216 • Generate - COPY Members Pop-up - Select COPY Member

13 After the member has been saved, a message displays in the long message area
indicating that the COBOL module has been successfully generated, as shown in
Figure 217. The status also changes from NO to YES under the Generated column.
Press PF3 to return to the Generate - HOST Server Module pop-up (see Figure 218).

Figure 217 • Generate - COPY Members Pop-up - Confirmation Message

230

8 CICS Server Extract
14 Type 3 to select Generate server module and press Enter to display the Edit screen
(see Figure 219 on page 232).

Figure 218 • Generate - HOST Server Module Pop-up

231

 ASG-Encore User’s Guide
15 Type CREATE on the command line and type C 9999 on the first line of code, as
shown in Figure 219. Press Enter to display the Edit/View - Create pop-up to save
the module in your source library (see Figure 220).

Figure 219 • Edit Screen - CREATE Command

16 Type the name you want to save the member as in your source library, verify or clear
any data in the Data Set Name and Volume Serial fields, and press Enter to return to
the Edit screen (see Figure 221 on page 233).

Figure 220 • Edit/View - Create Pop-up - SERVER Member
232

8 CICS Server Extract
17 The Edit screen redisplays with a message confirming that the member has been
created, as shown in Figure 221. Press PF3 to return to the Generate - HOST Server
Module pop-up (see Figure 222).

Figure 221 • Edit Screen - Member SERVER Created

18 Type 4 and press Enter to exit the Generate - HOST Server Module pop-up and
return to the Encore Primary screen. The CICS server module has now been
generated.

Figure 222 • Generate - HOST Server Module Pop-up

233

 ASG-Encore User’s Guide
Understanding the Results of the CICS Server Module
Generation

As a result of the CICS server extract, Encore created a standalone program that contains
all of the necessary statements, files, and data elements to produce the CICS server.
Figure 223 shows the comments generated by Encore at the beginning of the module. The
comments indicate the extract objective type and the name of the file extracted
(SERVER).

Figure 223 • CICS Server Module - Screen 1
234

8 CICS Server Extract
Encore flags any code changes it has made with comments imbedded within the program,
as shown in Figure 224. Data definitions that are not needed by the server program are
removed.

For example:

• The original DFHCOMMAREA is now renamed to CPYCOMAR and defined to be
a record under the new DFHCOMMAREA (parameter list).

• Data needed to be communicated between the client and the server programs are
now defined as another record (VIARBRCS) under the new parameter list.

Figure 224 • CICS Server Module - Screen 2
235

 ASG-Encore User’s Guide
Only those statements and files that contribute to the creation of the CICS server program
are included, as shown in Figure 225.

• The AID key value (e.g., function keys) is passed in by the client using
DFHCOMMAREA.

• Copy it to EIBAID to allow the server code to function as before.

Figure 225 • CICS Server Module - Screen 3
236

8 CICS Server Extract
Code referring to the original DFHCOMMAREA is changed to use the new record
ASG-DFHCOMM, which is passed in by the client program. Original code not associated
with the page-backward logic has been removed, as shown in Figure 226. In this case, the
code removed deals with the initialization of the original DFHCOMMAREA, which
should be performed now by the client.

Figure 226 • CICS Server Module - Screen 4
237

 ASG-Encore User’s Guide
Error checking code has been modified since the original way of showing errors would
not work in the server. You need to review, and possibly replace, all code generated from
the CICS server module extraction/generation process. Figure 227 shows an example of
code that should be reviewed and/or replaced by other code that sets an error indicator in
the parameter list so the client can display the error properly.

Figure 227 • CICS Server Module - Screen 5a
238

8 CICS Server Extract
Figure 228 shows where the data generated by the page-backward logic is displayed by
the original code. Encore has replaced the SEND MAP statement with statements that
update the parameter list and return to the caller, which is expected to display the data in
the parameter list.

Figure 228 • CICS Server Module - Screen 6
239

 ASG-Encore User’s Guide
Figure 229 shows that the original RECEIVE MAP statement has been removed. Data
that were originally set by the RECEIVE MAP statement are expected to be passed in
using the parameter list when this CICS server module is invoked by the client.

• The CLEAR key processing should have been handled by the client.

• The page-forward logic should have been extracted to a separate CICS server
module. The client code should have dispatched the processing of the page-forward
command to that logic. Checking for the page-forward command is therefore
unnecessary. Encore replaces it with a statement that does not process it.

• The READ-NEXT paragraph has been removed because it is not needed by the
page-backward logic.

Figure 229 • CICS Server Module - Screen 7
240

8 CICS Server Extract
Figure 230 shows that the original code to display the main menu has been replaced by a
RETURN statement to transfer control back to the client.

Figure 230 • CICS Server Module - Screen 8
241

 ASG-Encore User’s Guide
CICS Server Extract Compilation Issues

A module-generated from a CICS server extract may contain compile errors or code that
must be reviewed for correctness or optimal performance. When these conditions occur,
Encore inserts comment messages in the generated modules, as discussed in these CICS
server extract conditions.

Condition 1

Encore has generated compile errors on label names used in CICS HANDLE
CONDITION statements, but not defined in the CICS server module.

Cause Action

Encore removed error handling code
from the server program that is not part of
the server logic.

Review your error handling logic to see if
the CICS HANDLE CONDITION
statements in the server program are still
viable. You may want to replace the
original error handling logic with code that
sets certain error indicators and returns
them as output parameters. Additionally,
you may also want to replace the error
detection method. Current programming
practices recommend using the DFHRESP
option instead of HANDLE CONDITION
statements to detect error conditions. See
your CICS application programming
guides for details about how this should be
done.
242

8 CICS Server Extract
Condition 2

Encore has generated incorrect NEXT SENTENCE statements that appear to lead to
paths for which the preconditions have apparently failed.

Cause Action

The preconditions that apparently failed
should never happen in the first place.
Encore does not automatically eliminate
these conditional statements, giving the
false impression that the code generated
is incorrect.

Review all the conditional statements that
contain NEXT SENTENCE statements
generated by Encore. If these conditional
statements perform checks before the
proper start of the server logic, make sure
they have been replaced by equivalent
checks on the client side before the server
is invoked. Once this is done, these
conditional statements can be commented
out or eliminated from the server program.
For example, the original logic that causes
the server to be invoked may perform a
check to see if the EIBAID key is the PF1
function key. This logic may be
implemented in the client as a check or to
determine whether a PAGE DOWN button
was clicked. The server in this case would
not be invoked unless the condition is true
on the client side. The corresponding
check on the server side is therefore
redundant and should be eliminated. They
are retained in the server code generated
by Encore only as a reminder that they
should be reimplanted in the client code.
243

 ASG-Encore User’s Guide
Condition 3

Encore has generated some incorrect branches. They should have led to other paths but
are replaced by Encore with simple NEXT SENTENCE statements that nullify the branch
statements.

Condition 4

Encore has generated compile errors on COPY statements.

Cause Action

The branches that are nullified would
have lead to paths that are not in the
server.

Review all the conditional statements that
contain NEXT SENTENCE statements
generated by Encore. If these conditional
statements test for conditions that would
have caused a different SEND MAP
statement to be executed, replace these
statements with code to set a certain
indicator in the output parameter list. The
client side logic should be implemented to
check this indicator to decide what other
actions to take after the server returns.

Cause Action

The COPY members have not been
generated or were generated but saved
under incorrect names.

Go through the "Generating the CICS
Server Module" on page 223 steps until
you reach the Generate - COPY Members
pop-up (see Figure 212 on page 228).
Verify that all COPY members have been
generated. If the COPY members are not
found, even though Encore shows them as
having been generated, check your copy
libraries to see if the COPY members have
been generated under the correct names.
Encore places you in an edit session in the
generate process so you can save the result
in any dataset you choose, but Encore has
no way of verifying if you have named the
resulting file to match the COPY
statement.
244

8 CICS Server Extract
Extracting the Self Directed Server Program

If you do not want to extract a CICS server, you can use the Extract - Server menu option
(see Figure 232 on page 246) to select a Self Directed server and generate the type of
server you require.

To select the Self Directed Server Extract

1 Select Extract Server and press Enter to display the Extract - Name Logic Segment
pop-up, as shown in Figure 231.

The name field on this pop-up contains a default name generated by Encore. You
can assign your own name to the Logic Segment or you can use the default name.
For this example, use the default name CLIENT-SERVER-0001.

Figure 231 • Extract - Name Logic Segment Pop-up

2 Press Enter to display the Extract - Server pop-up (see Figure 232 on page 246).
245

 ASG-Encore User’s Guide
3 Figure 232 contains a list of available server types. Type 2 to select Self Directed
and press Enter to display the Extract - Self Directed Server Endpoints pop-up (see
Figure 233).

Figure 232 • Extract - Server Selection Pop-up

4 You can reduce the list of selectable names by pressing PF5, or by typing Filter and
pressing Enter to display the Extract - Filter - Self Directed Server Filter pop-up (see
Figure 234 on page 247).

Figure 233 • Extract - Self Directed Server Endpoints Pop-up
246

8 CICS Server Extract
5 This pop-up allows you to specify filtering criteria. Type the data name you want to
search for (COMMAREA in this example) and enter the other options you want to
use in the filter process, as shown in Figure 234. Press Enter to display the
Extract - CICS Server Endpoints pop-up (see Figure 235 on page 248).

Figure 234 • Extract - Filter - Self Directed Server Filter Pop-up
247

 ASG-Encore User’s Guide
6 Figure 235 contains all of the filtered statements associated with the CICS member.
You need to extract all statements that contribute to the output data. To ensure that
you are selecting the code you want to extract, type V next to the statement you want
to view and press Enter to display the View Source pop-up (see Figure 236 on page
249).

Figure 235 • Extract - Self Directed Server Endpoints Pop-up
248

8 CICS Server Extract
7 Verify that the selected statement code represents the type of code you want to
extract, as shown in Figure 236. After verifying the code, press PF3 to return to the
Extract - Self Directed Server Endpoints pop-up (see Figure 237). If necessary,
repeat this process until you find the code you want to extract.

Figure 236 • View - Source Pop-up

8 Type S next to the Endpoint server statement line you want to select, and press Enter
to display the Extract - Self Directed Server Data Names pop-up (see Figure 238 on
page 250).

Figure 237 • Extract - Self Directed Server Endpoints Pop-up
249

 ASG-Encore User’s Guide
9 Type S to the left of the data name(s) you want, as shown in Figure 238.

Figure 238 • Extract - Self Directed Server Data Names Pop-up

10 The selected data names are highlighted, as shown in Figure 239. Press Enter to
display the Extract - Self Directed Server Startpoints pop-up (see Figure 240 on page
251).

Figure 239 • Extract - Self Directed Server Data Names Pop-up - Selected Data Names
250

8 CICS Server Extract
11 Page down until you find the startpoint and type S next to the Startpoint server
statement line you want to select, as shown in Figure 240. Press Enter to display the
Extract - Self Directed Server Endpoints pop-up (see Figure 241).

Figure 240 • Extract - Self Directed Server Startpoints Pop-up

12 Verify that the message in the long message area indicates that the statements for the
EXEC CICS SEND code were successfully selected. Press Enter to display the
Extract - Self Directed Server Paths pop-up (see Figure 242 on page 252).

Figure 241 • Extract - Self Directed Server Endpoints Pop-up
251

 ASG-Encore User’s Guide
13 The default T (TRUE) or F (FALSE) selections have been made based on the
selection criteria, as shown in Figure 242. When you are done reviewing or changing
the information on this pop-up press Enter to display the Extract - Self Directed
Server Outputs pop-up (see Figure 243 on page 253).

Figure 242 • Extract - Self Directed Server Paths Pop-up

Note:
An X next to a generated conditional indicates that the code does not apply to this
extract.
252

8 CICS Server Extract
14 Select the Output statement you want to include in the server and press Enter to save
the selection, as shown in Figure 243. Press Enter again to return to the Encore
Primary screen (see Figure 244).

Figure 243 • Extract - Self Directed Server Outputs Pop-up

The Encore Primary screen displays with a message indicating that criteria for the
Statement extract were successfully selected.

Figure 244 • Encore Primary screen - Confirmation Message

See the online help for more information about Encore Extract features.
253

 ASG-Encore User’s Guide
Using IBM Solutions

After you have extracted and generated the server-side components from a CICS
application, you can use a variety of existing IBM solutions to migrate to a client/server
or web-based architecture. These server components may be deployed in a web-based
application in a variety of ways. This section presents three alternatives for implementing
a web-based application using the server-side components generated using Encore. As all
three alternatives rely on IBM products to provide the communication infrastructure, the
last part of this section describes the resources available from IBM to help implement
these alternative solutions.

Approach #1: Web-to-CICS Using 3270 Bridge

Figure 245 shows the structure of an application that uses CICS Web Support and 3270
Bridge to translate between BMS screens and HTML pages, which provides quick access
to existing 3270-based applications from the web. The boxes on the right side of the
figure represent software products or components available from IBM.

Figure 245 • Web-to-CICS Using 3270 Bridge Example
254

8 CICS Server Extract
Although web access using 3270 Bridge can be done without separating the business
logic and the user interface, making the separation allows the logic in each component to
be more readily identified and understood. It also allows the presentation logic to be
isolated and tested before being migrated to other presentation technologies, such as
HTML. Extracting the server components using Encore and deploying them under this
approach provides a migration path to solutions based on other approaches in the future.

These are some advantages:

• Rapid implementation.

• Low risk because this solution requires minimal changes to an existing application.

• Only a single copy of presentation logic is required.

These are some disadvantages:

• Clumsy looking and inflexible user interface.

• Server resources consumed by the user interface limit scalability.

• Solutions are unlikely to be long-lived or strategic.
255

 ASG-Encore User’s Guide
Approach #2: Web-to-CICS Using Web-Aware CICS Programs

Figure 246 shows the structure of an application that uses user-written CICS programs to
generate the HTML pages to be displayed in web browsers and to process requests. These
programs use EXEC CICS WEB commands or the communication area to receive HTTP
requests, invoke the proper CICS server programs using EXEC CICS LINK, and then
format the results into HTML pages, which are returned as the HTTP response.

Figure 246 • Web-to-CICS Using Web-Aware CICS Programs Example

These are some advantages:

• Presentation logic stays on the original platform.

• Flexibility in customizing the user interface.

• Ease of integrating outputs from multiple business components.

These are some disadvantages:

• Multiple versions of presentation logic; one for the web and one for the legacy
users.

• Server resources consumed by the user interface may limit scalability.

• Requires combining web page design expertise with CICS development expertise.
256

8 CICS Server Extract
Approach #3: Web-to-CICS Using Java

Figure 247 shows the structure of an application providing web access to CICS using
CICS Transaction Gateway. CICS Transaction Gateway runs on the same platform as the
web server and communicates with CICS applications running on CICS servers through
ECI or EXCI. The presentation logic in this approach is located on the same platform as
the web server, implemented as HTML pages and Java applets. A CICS Java-class library
is provided to allow the applets to communicate between the web page displayed in the
web browser and the CICS Transaction Gateway.

Figure 247 • Web-to-CICS Using Java Example

These are some advantages

• Presentation is controlled by web design experts.

• Multiple options are available in web server platforms.

• Diverse selection of web page and Java design tools.

• Potential of integrating outputs from multiple business components on multiple
platforms.

• Scalable.

These are some disadvantages

• Multiple versions of presentation logic.

• Significant initial development time and effort.
257

 ASG-Encore User’s Guide
Available IBM Resources

Each of the approaches outlined in this section requires significant work in planning,
design, implementation, and deployment. These issues must be resolved first:

• Proper selection, configuration, and implementation of the middleware (the
communication infrastructures between the presentation layer and the business
logic). Currently, there are a number of alternatives, each with its own strengths and
weaknesses. The choice must be made with careful planning and deliberation.

• Proper implementation of the presentation layer. It should be noted that because
external users of an application often have different expectations of the user
interface than the internal users, a mechanical translation of the user interface rarely
provides an acceptable alternative to the need for re-implementing the user
interface.

• Security and authorization. Opening up an internal application for external access
exposes an enterprise to new issues in security and authorization. Solving these
issues is not easily automated with today’s technology.

• Application development tools, processes, technologies, and expertise. The pace at
which the web is evolving demands solutions that are flexible and quickly
implemented, while remaining durable. Achieving a balance between flexibility and
durability requires resolving issues that are far beyond what a software product can
address.

Most of these issues do not have simple, product-based solutions. IBM’s International
Technical Support Organization (ITSO) has developed a collection of books to deal with
these types of issues. Known as Redbooks, these books cover general concepts, provide
background materials, and offer practical technical guidance on how to solve these
problems. These are some of the documents you may want to review to gain a better
understanding of the issues concerning migration of an existing OS/390 CICS application
to support web access:

• CICS Transaction Server for OS/390 Version 1 Release 3: Web Support and 3270
Bridge, SG24-5480-00, last updated July 15, 1999.

• Revealed! Architecting Web Access to CICS, SG24-5466-00, published June 9,
1999.

• Revealed! CICS Transaction Gateway with More CICS Clients Unmasked,
SG240-5277-00, published December 16, 1998.

Additional reference material may be found in IBM’s product documentation libraries.
One of the most useful guides is CICS Transaction Server for OS/390 - CICS Internet
Guide (SC34-5445-00), published March 1999.
258

Glossary
Abend
Abnormal end of task.

action bar
The line of keywords at the top of a screen. Each keyword represents a category of
actions that may be performed on that screen. An action is selected by moving the cursor
to the desired keyword and pressing Enter.

AKR (Application Knowledge Repository)
A BDAM or VSAM file that contains all analysis information produced by the analyze
function of the Application Analytical Engine.

AKR utility log
File that provides a summary of the commands issued to the Batch AKR Utility.

Alias Of
A field on a pop-up listing entries in the AKR. If the analyzed program contains an Entry
point, Alias Of is the name of the program that contains the Entry point. If the name in the
PROGRAM-ID statement was overridden at the time the analyze job was submitted,
Alias Of is the name that was entered in the AKR program name field on the
File - Analyze Submit pop-up.

analyze
The process by which Encore gathers information about the program, including program
relationships, logic, data and execution paths, and stores this information in the AKR.

analyze options
Run-time options that control the Analyze processing. Many of these options are similar
to the COBOL compiler options. Default values are established at installation time and
can be overridden by editing the Analyzer JCL or by using the analyze screens.

analyze summary report
A summary of the run-time statistics and diagnostic messages that are produced when an
analyze job completes.

anomalies
A deviation or departure from the normal Encore analysis process.
259

ASG-Encore User’s Guide
Anomaly Repair facility
An Encore facility that allows you to repair programs already analyzed in an AKR that
contain anomalies. This is accomplished by allowing you to reanalyze the member that
generated the anomaly condition using the File Anomaly facility pull-down option.

anomaly reports
Reports that contain information beneficial in understanding and diagnosing analysis
problems and anomalies.

anchor
An HTML element that defines a link between Internet resources.

API
Application programming interface. A set of calling conventions defining how a service
is invoked through a software package.

APPC
Advanced program-to-program communication. An implementation of the SNA LU 6.2
protocol that allows interconnected systems to communicate and share the processing of
programs.

application
Any group of programs that a user wants to analyze/view as a whole. These programs
would all be defined within the same application.

asynchronous
Without regular time relationship, unexpected or unpredictable with respect to the
execution of program instructions. See "synchronous" on page 270.

Batch AKR command
Control cards input in the VIASYSIN DD dataset of the Batch AKR Utility.

Batch AKR utility
The facility used to maintain the AKR without using ISPF.

browser
An application that displays World Wide Web documents.

business group
A logical grouping of applications by business function.

business rule
A logical business function that is performed by a COBOL program.

CERN
The Couseil Europeen pour la Recherche Nucleaire (European Particle Physics
Laboratory), which developed hypertext technologies.
260

Glossary
CICS server extract
A CICS server extract locates the necessary statements, files, and data elements required
to create a CICS server extract program. This program is then used to create a
COMMAREA-based server program from a CICS pseudo-conversational program.

client
As in client/server computing, the application that makes requests to the server and,
often, handles the interaction necessary with the user.

client/server computing
A form of distributed processing, in which the task required to be processed is
accomplished by a client portion that requests services and a server portion that fulfills
those requests. The client and server remain transparent to each other in terms of location
and platform. See client above and "server" on page 269 .

COBOL subset
COBOL verbs of a similar nature that have been grouped together. For example, READ,
WRITE, OPEN, and CLOSE are grouped into the IO subset.

command
An option in a menu. A command is selected to perform an action. There are the three
types of commands

• Primary commands

• Line commands

• Batch AKR utility commands

command input area
The field on Encore screens where primary commands are entered, indicated by ===> on
the fourth line of a screen, or the second line of a pop-up.

commit
An action that an application takes to make permanent the changes it has made to CICS
resources.

common code extract
The process of identifying the code that is common to two or more previously-extracted
Logic Segments. This includes all statements that appear in a selected Logic Segment, as
well as appearing in all other selected Logic Segments.

Common Gateway Interface (CGI)
The defined standard for the communications between HTTP servers and external
executable programs.

Common User Access (CUA)
A style of graphical interface that features screens, actions bars, pull-downs, and pop-ups
that are designed to provide easy access to all product features.
261

ASG-Encore User’s Guide
complement extract
The process of identifying a set of COBOL statements that do not include a previous
extract. This includes all statements from the original program, excluding statements of
the previously-extracted Logic Segment, but retaining any statements needed by other
functional paths.

complement module
A complement module contains all statements from the original program, excluding
statements of the extracted Logic Segment, but retaining any statements needed by other
functional paths.

computation variable extract
The process of isolating the minimum set of statements that determine the value of a
particular data variable (known as the computation variable) at a particular statement in
the program.

cursor substitution character
A token substitution character that may be used in some primary commands. The cursor
substitution character is set on the Options - Product Parameters pop-up.

conversational
A communication model where two distributed applications exchange information by
way of a conversation. Typically, one application starts (or allocates) the conversation,
sends some data, and allows the other application to send some data. Both applications
continue in turn until one decides to finish (or deallocate). The conversational model is a
synchronous form of communication.

criteria
The information entered that was used to isolate a Logic Segment.

cursor position
The current location of the cursor on the screen, used as a starting point in certain
commands.

database

• A collection of interrelated data stored together with controlled redundancy
according to a scheme to serve one or more applications.

• All data files stored in the system.

• A set of data stored together and managed by a database management system.

data name
A standard COBOL term for fields defined in the DATA DIVISION of a COBOL
program. Variable names, files, groups, array elements, and fully qualified data names.
262

Glossary
data usage
Defines how a data item is used.

• DEF indicates the statements in the DATA DIVISION where the data item is
defined.

• USE indicates the statements where the value is used or tested.

• MOD indicates the statements where the value is set or modified.

• REF indicates any of the above conditions.

dead assignment
A statement that assigns a value to a variable, where the value is not referenced anywhere
in the source code. The assignment is not necessary and may be removed from the code
without affecting program execution.

delimiter
A character or sequence of characters used as a separator in text or data files.

Distributed Computing Environment (DCE)
Adopted by the computer industry as a de facto standard for distributed computing. DCE
allows computers from a variety of vendors to communicate transparently and share
resources such as computing power, files, printers, and other objects in the network.

distributed processing
An application or systems model in which function and data can be distributed across
multiple computing resources connected on a LAN or WAN. See "client/server
computing" on page 261.

Distributed Program Link (DPL)
Enables an application program executing in one CICS system to link (pass control) to a
program in a different CICS system. The linked-to program executes and returns a result
to the linking program. This process is equivalent to remote procedure calls (RPCs). You
can write applications that issue RPCs that can be received by members of the CICS
family.

Distributed Transaction Processing (DTP)
Enables a transaction running in one CICS system to communicate synchronously with
transactions running in other systems. The transactions are designed and coded
specifically to communicate with each other. This method is typically used by banks, for
example in just-in-time stock replacement.

Double Byte Character Set (DBCS)
A character set that uses two bytes to represent each character. Various Double Byte
Character Sets are used with languages such as Chinese and Japanese that cannot be
represented with single byte codes.
263

ASG-Encore User’s Guide
environment
The collective hardware and software configuration of a system.

equate
A substitution name for a character string.

External Call Interface (ECI)
An application programming interface (API) that enables a non-CICS client application
to call a CICS program as a subroutine. The client application communicates with the
server CICS program using a data area called COMMAREA.

External Presentation Interface (EPI)
An application programming interface (API) that allows a non-CICS application program
to appear to the CICS system as one or more standard 3270 terminals. The non-CICS
application can start CICS transactions and send and receive standard 3270 data streams
to those transactions.

File Transfer Protocol (FTP)
A protocol that defines how to transfer files from one computer to another.

forms
Parts of HTML documents that allow users to enter data.

function shipping
Enables an application program running in one CICS system to access resources owned
by another CICS system. In the resource-owning system, a transaction is initiated to
perform the necessary operation. For example, to access CICS files or temporary storage,
and to reply to the requester. The user is unaware of these behind-the-scenes activities,
and need not know where the resource actually exists.

gateway
Software that transfers data between normally incompatible applications, or between
networks.

gopher
Menu-based software for exploring Internet resources.

Graphic Interchange Format (GFI)
256-color graphic format.
264

Glossary
help
Encore provides these three levels of help:

• Long messages

• Notes

• Tutorial screens

Specific command information is available by entering a command, then pressing
PF01/13. The Help facility can also be accessed from the Help pull-down or any Encore
screen.

home page
The default page shown at the first connection to an HTTP server.

host

• In a computer network a computer providing services such as computation,
database access, and network control functions.

• In a multiple computer installation, the primary or controlling computer.

hypertext
Text that activates connection to other documents when selected.

Hypertext Markup Language (HTML)
Standard language used to create hypertext documents.

Hypertext Transmission Protocol (HTTP)
Standard WWW client/server communications protocol.

Internet Keyed Payment Protocol (IKP)
Proposed protocol for conducting secure commercial financial transactions on the
Internet.

intercommunication
Communication between separate systems by means of Systems Network Architecture
(SNA), Transmission Control Protocol/Internet Protocol (TCP/IP), and Network Basic
Input/Output System (NetBIOS) networking facilities.

internet
A collection of networks.

label name
Any PROCEDURE DIVISION paragraph or section name and the PROCEDURE and
PROC literals. Label name specifies all transfers of control to a paragraph or section.

line command
An instruction entered in the line command area on certain screens.
265

ASG-Encore User’s Guide
list box
A dialog box option containing a list of items the user can select.

list file
The file that is allocated when a request to print is issued.

live exit
An abnormality in program control caused by out of perform range GO TOs and
overlapping perform ranges.

log file
The file that is allocated by Encore and used for error messages and log commands. There
is a separate log file created by the Batch AKR utility.

logic segment
A set of source statements that is the result of a perform range extract, report extract,
computation variable extract, transaction extract, statement extract, complement extract,
server extract, or common code extract. The criteria used to isolate a Logic Segment may
be saved in the AKR.

logic segment complement
See "complement module" on page 262.

logical program unit
A PERFORMed range of code including GO TO code, or a CALLed program.

Logical Unit of Work (LUW)
An update that durably transforms a resource from one consistent state to another
consistent state. A sequence of processing actions (for example, database changes) that
must be completed before any of the individual actions can be regarded as committed.
When changes are committed (by successful completion of the LUW and recording of the
synch point on the system log), they do not need to be backed out after a subsequent error
within the task or region. The end of an LUW is marked in a transaction by a synch point
that is issued by either the user program or the CICS server, at the end of task. If there are
no user synch points, the entire task is an LUW.

long message
A diagnostic or error message that is displayed on line five of a screen or line three of a
pop-up. Long messages are sometimes preceded by short messages that are displayed in
the upper right corner of the screen. Pressing PF01/PF13 (HELP) after receiving a short
message displays the corresponding long message.

LU type 6.2 (LU 6.2)
A type of logical unit used for CICS intersystem communication (ISC). LU 6.2
architecture supports CICS host-to-system-level products and CICS host-to-device-level
products. APPC is the protocol boundary of the LU 6.2 architecture.
266

Glossary
markup tag
Special character sequences put in text used to pass information to a tool, such as a
document formatter.

member
A member in a PDS or source manager such as Panvalet or Librarian. This can be the
alias name found in the AKR.

menu
A list of available commands in an application window. Menu names appear in the menu
bar of the application window.

menu bar
A bar that contains the menus available for your use.

message box
A box that displays a message (error or otherwise) to inform the user of a particular
condition.

Multipurpose Internet Mail Extension (MIME)
The Internet standard for mail that supports text, images, audio, and video.

NCSA Mosaic
A web browser available on multiple platforms.

online help
See "help" on page 265.

Online Transaction Processing (OLTP)
A style of computing that supports interactive applications in which requests submitted
by terminal users are processed as soon as they are received. Results are returned to the
requester in a relatively short period of time. An online transaction processing system
supervises the sharing of resources to allow efficient processing of multiple transactions
at the same time.

paragraph name
Any PROCEDURE DIVISION paragraph or section name, and the PROCEDURE and
PROC literals. Paragraph name includes the entire paragraph or section.

partial statement
In a generated COBOL module, a statement that has been modified to omit certain data
names or file names that are not required for that statement in the generated module. The
partial statement contains only that portion of the statement required for the generated
module.
267

ASG-Encore User’s Guide
perform range
A perform range consists of the source code contained in a PERFORM statement, and
includes all code that is or could be executed as a result of GO TOs, PERFORMs, etc.
within that PERFORM.

perform range extract
The process of isolating all executable statements of a perform range. This includes not
only the statements within the range, but also all code that is reachable using GO TO or
PERFORM from within the range.

pop-up
A window that appears as the result of selecting an item on a pull-down or pop-up, or as
the result of entering certain commands. It is superimposed on the screen to allow entry
of information for the requested action.

postscript
The standard for presenting text and graphics in a device-independent format.

primary command
An instruction entered in the command input area of the screen.

program
Program source member name, the name specified in the IDENTIFICATION DIVISION
of a COBOL program, or the CSECT name of a program that is not COBOL.

protocol

• A formal set of conventions governing the format and control of data.

• A set of procedures or rules for establishing and controlling transmissions from a
source device or process to a target device or process.

proxy
A gateway that allows Web browsers to pass on a network request (a URL) to an outside
agent.

pseudo conversational
A type of CICS application design that appears to the user as a continuous conversation,
but consists internally of multiple tasks.

pull-down
The list that appears when an action is selected on the action bar. On a pull-down, an
action followed by ellipses (...) displays a pop-up when selected and an action not
followed by ellipsis (...) immediately activates internal commands.

punch file
The file that is allocated when a request to punch is issued.
268

Glossary
recovery
The use of archived copies to reconstruct files, databases, or complete disk images after
they are lost or destroyed.

recoverable resources
Items whose integrity CICS maintains in the event of a system error. These include
individual files and queues.

recursion
A perform range or paragraph that performs itself.

reengineering
The process of renovating an existing program to isolate and extract distinct functions.
Encore can isolate and extract code based on a perform range, report, computation
variable, transaction, or server.

report extract
The process of isolating all WRITE/GENERATE statements for a specific File
Description (FD) or Report Description (RD). Individual statements may be selected. The
extracted unit consists of the statements required to produce the WRITE/GENERATE
statement(s).

SBCS
See "Single Byte Character Set - (SBCS)" on page 270.

screen
A full-width display of information containing an action bar as the first line. Encore
screens are modeled after TSO/ISPF screens.

screen subset
The result of an interactive command.

script
An executable program invoked by HTTP servers.

script file
A dataset containing Encore commands, created when SET SCRIPT is ON, and executed
with the EXECUTE primary command or the File Execute script pull-down option.

server
Any computing resource dedicated to responding to client requests. Servers can be linked
to clients through LANs and WANs to perform services (such as printing, database
access, fax, and image processing) on behalf of multiple clients at the same time.

server extract
Process used to create a COMMAREA-based server program from a 3270 CICS
pseudo-conversational program.
269

ASG-Encore User’s Guide
shortcut key
A keyboard key or combination of keys that invokes a particular command, such as
CNTL + N.

short message
A diagnostic or error message that is displayed in the upper right corner of Encore
screens. Pressing PF1/PF13 (HELP) after receiving a short message displays the
corresponding long message.

Single Byte Character Set - (SBCS)
A character set that uses one byte to represent each character. Single Byte Character Sets
are used with languages, such as English, where the characters can be represented with a
one-byte code.

Socket Secure (SOCKS)
The gateway that allows compliant client code (client code made socket secure) to
establish a session with a remote host.

Standard Generalized Markup Language (SGML)
The standard that defines several markup languages, HTML included.

statement extract
The process of isolating all user-identified statements from a program.

status bar
The area at the bottom of a main window that lists the status of an action and gives other
information, such as the meaning of a command.

Storage Management Subsystem (SMS)
An operating environment that automates and centralizes the management of storage. To
manage storage, SMS provides the storage administrator with control over data class,
storage class, management class, storage group, and ACS routine definitions.

subset
A grouping of source lines in a program. See "COBOL subset" on page 261, "screen
subset" on page 269, and "tagged line subset" on page 271 .

synchronous

• Pertaining to two or more processes that depend on the occurrence of a specific
event such as a common timing signal.

• Occurring with a regular or predictable time relationship.
270

Glossary
synchpoint
A logical point in execution of an application program where the changes made to the
databases by the program are consistent and complete and can be committed to the
database. The output, which has been held up to that point, is sent to its destination. The
input is removed from the message queues and the database updates are made available to
other applications. When a program terminates abnormally, CICS recovery and restart
facilities do not back out updates prior to the last completed synchpoint.

tagged line subset
Command results displayed in columns 73 through 80 of the Source View screen.

target
The object of a primary command.

transaction
A unit of processing (consisting of one or more application programs) initiated by a
single request. A transaction can require the initiation of one or more tasks for its
execution.

transaction extract
The process of isolating all conditional statements for a specific transaction control
variable. Certain program paths may then be selected or blocked, based on the transaction
code value.

transaction processing
A style of computing that supports interactive applications in which requests submitted
by users are processed as soon as they are received. Results are returned to the requester
in a relatively short period of time. A transaction processing system supervises the
sharing of resources for processing multiple transactions at the same time.

transaction routing
Enables a terminal connected to one CICS system to run a transaction in another CICS
system. It is common for CICS/ESA, CICS/VSE, and CICS/MVS users to have a
terminal-owning region (TOR) that owns end-user network resources.

VIASUB
An edit macro included with Encore that is used to submit an Analyze job.

VIASUBDS
A CLIST included with Encore that is used to submit an Analyze job.
271

ASG-Encore User’s Guide
view method
The manner in which a program is examined in the View facility. These are the three
view methods based on source code:

• Structure view

• Tree view

• Source view

All three views are available concurrently when a program is examined.

work file
A temporary file allocated upon entry to Encore.
272

273

Index

A
action bar

action descriptions 7
description 6
how to select actions 6
overview 6
shortened 6

AKR, allocating 33
Alliance

accessing from ESW screen xiv
description xi
linking xiv

Analysis/Anomaly Report parameters
NUMPRM(##) 38
RPTCEN 38
VIARERPT 38
VIARERPTAN 38

Analyze Facility
analyze a program through Encore 37
analyze input 36
compile/analyze 38
requirements 36

Anomaly Repair Facility parameter,
VIAANOMF 38

AutoChange
accessing from ESW screen xiv
description xi

B
Bridge

accessing from ESW screen xiv
description xi

C
Center, description xi
CICS server demo, presentation logic 214
CICS server endpoints 218
CICS server extract

3270 Bridge 254
Approach #1, Web-to-CICS Using

3270 Bridge 254

Approach #2, Web-to-CICS Using
Web-Aware CICS
Programs 256

Approach #3, Web-to-CICS Using
Java 257

ASG-DFHCOMM 237
available IBM resources 258
BMS screens 254
business logic - CICS server

demo 214
CICS applications 257
CICS clients 214
CICS EXEC 219
CICS extract features 222
CICS HANDLE CONDITION

statements 242
CICS HANDLE statements 242
CICS Java class library 257
CICS pseudo-conversational

program 44, 213
CICS server module 223
CICS server programs 256
CICS servers 257
CICS statements 221
CICS transaction gateway 257
CICS web support 254
COMMAREA 213
COMMAREA-based server

program 44
compilation issues 242
copy member field 224
COPY statements 244
CREATE command 228
description 213
DFHCOMMAREA 235–236
DFHRESP 242
ECI 257
EIBAID 236
EIBAID key 243
EXCI 257
EXEC CICS LINK 256
EXEC CICS SEND 221

ASG-Encore User’s Guide

274

EXEC CICS WEB commands 256
generation facilities 214
HTML pages 254, 256
HTTP requests 256
HTTP response 256
IBM solutions 254
IBM’s International Technical

Support Organization
(ITSO) 258

Java applets 257
java servlets 214
MQSeries 214
NEXT SENTENCE statements 243
Next-Page server module 215
OS/390 CICS application 258
parameter list 235
program 44
programs 214
READ-NEXT paragraph 240
RECEIVE MAP statement 240
RETURN statement 241
self directed server name 218
SEND MAP statement 239, 244
server extract 214
starting level number 224
understanding generated results 234
understanding the results of the

generated CICS server
module 234

utilizing IBM solutions 254
VIARBRCS 235
web access 215

CICS server scenario, 3270 Bridge 214
CICS server, description 4
COBOL terms

COBOL subset 15
set 14
subsets 15
subsets list 15

COBOL, OF clause 20
code extract, extracting code from a logic

segment 153, 207
command

END 6
FINDXTND 20
SCROLL 20

common code
eliminating within a multiple perform

range extract 99
finding between a callable sub-module

and its complement 112
within a multiple perform range

extract 99
compilation issues in the server extract 242

complement module, contents 45
computation variable extract

business scenario 133
compilation issues 155
extracting an objective 135
including non-selected code in the

logic segment 149
conventions page xvii
CUA features 6

D
data name

alias 19
DEFINITION 20
description 19
fully qualified 20
group level 20
MODIFICATION 20
REFERENCE 20
USE 20

data name type
elementary data name 19
file name 19
group name 19
special name 19
table element name 19

data, element 19
decomposition, selecting a program 41
definition

perform range extract 42
report extract 44
statement extract 44
transaction extract 43

E
Encore

accessing from ESW screen xiv
action bar 6
description xii
functional components 2
getting started 23
pop-ups 12
screens 10

END command 6
Estimate

accessing from ESW screen xiv
description xii

ESW
description x
invoking products xiii
product integration xiv

extract objective
CICS server extract 44

Index

275

computation-variable extract 43
perform range extract 42
report extract 44
statement extract 44
transaction extract 43

extracting multiple perform ranges
creating separate modules 92
creating the called sub-module 85
creating the complement module 104
expanding a collapsed perform range

list 89
line commands 89
with multiple entry points 85

extracting the CICS server program 217
extracting the CICS server program, self

directed server 245

G
generate cobol module, creating the callable

module 71
generating the CICS server module 223
group item 19

I
Insight

accessing from ESW screen xiv
description xii
using analysis functions xiv

IO module
example on generating 119
generating 119
substituting calls to 118

L
level number increment 224
logic segment

extracting code from 153
including additional lines in 149

M
migration 4

O
overview

action bar 6
pop-up 12
screen 10
target generation 4

P
pattern string, description 21
perform range extract

business scenario 57–58

common code 108
creating the callable module 71
creating the complement module 75
definition 42
extracting multiple perform ranges 85
extracting the objective 63
the logic segment 67
using 57
when to use 42

pop-up
description 12
Extract - CICS Server Endpoint 223
Extract - CICS Server Startpoint 223
File - AKR Utilities 33
format example 12
generate - COBOL module 115
Generate - FD Name List 119
Generate - IO Module 120
Generate - Specify Perform Range

ENTRY Names 89
Log/List/Punch 29
Log/List/Punch Definition 29
Options - Generate 32
overview 12
PF keys 31
Product Allocations 28
Product Parameters 27
Select Extract-within-Logic

Segment 154, 209
Select FD Names 116

pop-up screen
description 6
how to process 6

product integration xiv
program abnormalities

dead code, dead data 41
live exits 41
out of PERFORM jumps 41

project workbook, re-engineering
preliminary tasks 44

pull-down
description 6
format example 9
how to select actions 6

R
Recap

accessing from ESW screen xiv
description xii

reengineering
choosing a code extraction

objective 42
program cleanup 41

reengineering objectives

ASG-Encore User’s Guide

276

eliminate GOTOs 41
eliminating obsolete code 41
smaller modules 41
stand-alone modules 41

report extract
business scenario 182
complement module - understanding

the results 198
creating the complement module 194
creating the stand-alone report

module 188, 223
definition 44
when to use 44

S
scenario, perform range extract 57
screen

description 10
overview 10

screen subsets
EX or X subset 15
excluded subset 15
HI subset 15
highlighted subset 15
NONE or NX subset 15
NONExcluded subset 15
NONH or NHI subset 15
NONHighlighted subset 15
target 15

SCROLL command 20
self directed server

EXEC CICS SEND code 251
extract 245

server extract 48
set, multiple 14
shortened action bar 6
SmartDoc

accessing from ESW screen xiv
description xii

SmartEdit
accessing from ESW screen xiv
description xiii

SmartTest
accessing from ESW screen xiv
description xiii

statement extract 48

T
table entry 19
tagged line subsets

tags 15
target tags 15

target
data name description 19
description 18
label name description 18
line range description 19
paragraph name description 19
pattern 21
pattern string description 21
perform range name description 18
program name description 19
subset name description 19

target generation, overview 4
transaction extract

definition 43
when to use 43

transaction variable extract
business scenario 157
compilation issues 178
creating the replacement module 165
selecting the variable name 161
start/end usage notes 176

U
user options

how to set online operation
parameters 27

how to setting log, list, punch,
customization and work file 28

setting log, list, punch, customization
processing options 29

setting PF key values 31

V
variable, redefined 19
VIARBRWS, CICS demo program 49
VIARDEMO, Encore demonstration

program 49

W
wildcard patterns

member list 14
selection list 14

ASG Worldwide Headquarters Naples Florida USA I asg.com

	CD Contents
	Contents
	Preface vii

	Index
	A
	B
	C
	D
	E
	G
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

	Publication Conventions
	ASG Support Numbers
	Business Hours Support
	Non-Business Hours - Emergency Support

	ASG Web Site
	Enhancement Fax Form
	Preface
	About this Publication
	Related Publications
	ASG-Existing Systems Workbench (ASG-ESW)
	Invoking ESW Products
	ESW Product Integration
	Examples

	Introduction
	Encore Advantages
	Encore Overview
	Encore Components

	Product Overview
	Introduction
	Encore User Interface
	The Action Bar

	Help Facility
	Multiple Views
	Wildcard Patterns
	Understanding COBOL Terms
	Sets
	Subsets
	COBOL Subsets
	Targets

	Getting Started
	Introduction
	Starting an Encore Session
	Defining User Options
	Setting Online Operation Parameters
	Allocating Log, List, Punch, and Work Files
	Setting Log/List/Punch Processing Options
	Mapping PF Keys
	Options - Generate Pop-Up

	Allocating an AKR
	Verifying AKR Allocation Results

	The Analyze Facility
	Program Analyze Requirements
	Program Analyze Input
	Analyzing a Program through Encore
	Verifying Analyze Results

	Decomposition
	Defining Your Desired Goals
	Selecting a Program for Decomposition
	Program Cleanup
	Choosing a Code Extraction Objective - The Logic Segment
	Establishing a Project Notebook

	Clean-Up Tasks
	Complement Module Contents
	Perform Range Extract
	Report Extract
	Computation Variable Extract
	Transaction Extract
	Statement Extract
	Server Extract

	The Demonstration Program

	Perform Range Extract
	Introduction
	The Business Scenario
	Starting an Encore Session
	Extracting the Perform Range
	Viewing the Logic Segment
	Saving the Logic Segment
	Creating the CALLable Module

	Creating the Complement Module
	Listing of CALCDAYS
	Extracting Multiple Perform Ranges
	Creating the CALLed Module with Multiple Entry Points
	Creating Separate Modules from a Multiple Perform Range Extract
	Reviewing the Generated Modules
	Detecting and Eliminating Multiple Perform Range Common Code
	Creating Complement Modules from Multiple Perform Range Extracts

	Understanding Perform Extracts and Common Code
	Finding Common Code in CALLable Submodules and Complements
	Replacing IO Statements with CALLs to an IO Module
	Generating the IO Module
	Perform Range Extract Compilation Issues
	Condition 1
	Condition 2
	Condition 3
	Condition 4
	Condition 5
	Condition 6
	Condition 7
	Condition 8
	Condition 9

	Complement Module Program Listing
	Example 1 - Complement
	Example 2 - Submodule

	Computation Variable Extract
	Introduction
	The Business Scenario
	Starting an Encore Session
	Extracting the Computation Variable
	Viewing the Logic Segment
	Saving the Logic Segment
	Creating Pseudo Source Modules to Change Logic Segment Results
	Pseudo Source Modules
	Including Non-selected Code in the Logic Segment

	Controlling Extract Boundaries
	Extracting Code from an Existing Logic Segment

	Computation Variable Extract Compilation Issues
	Condition 1
	Condition 2
	Condition 3
	Condition 4

	Transaction Extract
	Introduction
	The Business Scenario
	Starting an Encore Session
	Extracting the Objective
	Creating the Replacement Module
	Changing the Start/End Points
	START/END Usage Notes

	Transaction Extract Compilation Issues
	Condition 1
	Condition 2
	Condition 3
	Condition 4
	Condition 5

	Report Extract
	Introduction
	The Business Scenario
	Starting an Encore Session
	Extracting the Report
	Creating the COBOL Module
	Understanding the Results of the Extract
	Creating the Complement Module
	Complement Module - Understanding Generated Notes
	Using Pseudo Source Modules to Change Logic Segments
	Pseudo Source Modules
	Including Non-selected Code in the Logic Segment

	Controlling Extract Boundaries
	Extracting Code from a Logic Segment

	Report Extract Compilation Issues
	Condition 1
	Condition 2
	Condition 3
	Condition 4
	Condition 5

	CICS Server Extract
	Introduction
	The Business Scenario
	Conversion Process
	Starting an Encore Session
	Extracting the CICS Server Program
	Generating the CICS Server Module
	Understanding the Results of the CICS Server Module Generation
	CICS Server Extract Compilation Issues
	Condition 1
	Condition 2
	Condition 3
	Condition 4

	Extracting the Self Directed Server Program
	Using IBM Solutions
	Approach #1: Web-to-CICS Using 3270 Bridge
	Approach #2: Web-to-CICS Using Web-Aware CICS Programs
	Approach #3: Web-to-CICS Using Java
	Available IBM Resources

	Glossary

